iverilog/vhdlpp/expression.cc

567 lines
12 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2011-2013 Stephen Williams (steve@icarus.com)
* Copyright CERN 2012-2015 / Stephen Williams (steve@icarus.com),
2015-03-27 15:23:48 +01:00
* @author Maciej Suminski (maciej.suminski@cern.ch)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
2012-08-29 03:41:23 +02:00
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "expression.h"
# include "subprogram.h"
# include "parse_types.h"
# include "scope.h"
# include <iostream>
# include <typeinfo>
# include <cstring>
# include <ivl_assert.h>
# include <cassert>
using namespace std;
Expression::Expression()
: type_(0)
{
}
Expression::~Expression()
{
}
void Expression::set_type(const VType*typ)
{
assert(type_==0 || type_==typ);
type_ = typ;
}
bool Expression::symbolic_compare(const Expression*) const
{
cerr << get_fileline() << ": internal error: "
<< "symbolic_compare() method not implemented "
<< "for " << typeid(*this).name() << endl;
return false;
}
ExpAttribute::ExpAttribute(ExpName*bas, perm_string nam)
: base_(bas), name_(nam)
{
}
ExpAttribute::~ExpAttribute()
{
delete base_;
}
Expression*ExpAttribute::clone() const
{
return new ExpAttribute(static_cast<ExpName*>(base_->clone()), name_);
}
2011-02-20 02:47:30 +01:00
ExpBinary::ExpBinary(Expression*op1, Expression*op2)
: operand1_(op1), operand2_(op2)
{
}
ExpBinary::~ExpBinary()
{
delete operand1_;
delete operand2_;
}
bool ExpBinary::eval_operand1(ScopeBase*scope, int64_t&val) const
{
return operand1_->evaluate(scope, val);
}
bool ExpBinary::eval_operand2(ScopeBase*scope, int64_t&val) const
{
return operand2_->evaluate(scope, val);
}
ExpUnary::ExpUnary(Expression*op1)
: operand1_(op1)
{
}
ExpUnary::~ExpUnary()
{
delete operand1_;
}
ExpAggregate::ExpAggregate(std::list<element_t*>*el)
: elements_(el? el->size() : 0)
{
assert(el);
size_t idx = 0;
while (! el->empty()) {
assert(idx < elements_.size());
elements_[idx++] = el->front();
el->pop_front();
}
}
ExpAggregate::~ExpAggregate()
{
for (size_t idx = 0 ; idx < elements_.size() ; idx += 1)
delete elements_[idx];
}
Expression* ExpAggregate::clone() const
{
std::list<element_t*>*new_elements = NULL;
if(!elements_.empty()) {
new_elements = new std::list<element_t*>();
for(std::vector<element_t*>::const_iterator it = elements_.begin();
it != elements_.end(); ++it) {
new_elements->push_back(new element_t(**it));
}
}
assert(aggregate_.empty()); // cloning should not happen after elab
return new ExpAggregate(new_elements);
}
ExpAggregate::choice_t::choice_t(Expression*exp)
: expr_(exp)
{
}
ExpAggregate::choice_t::choice_t()
{
}
ExpAggregate::choice_t::choice_t(prange_t*rang)
: range_(rang)
{
}
ExpAggregate::choice_t::choice_t(const choice_t&other)
{
if(Expression*e = other.expr_.get())
expr_.reset(e->clone());
if(other.range_.get())
range_.reset(new prange_t(*other.range_.get()));
}
ExpAggregate::choice_t::~choice_t()
{
}
bool ExpAggregate::choice_t::others() const
{
return expr_.get() == 0 && range_.get() == 0;
}
Expression*ExpAggregate::choice_t::simple_expression(bool detach_flag)
{
Expression*res = detach_flag? expr_.release() : expr_.get();
return res;
}
prange_t*ExpAggregate::choice_t::range_expressions(void)
{
return range_.get();
}
ExpAggregate::element_t::element_t(list<choice_t*>*fields, Expression*val)
: fields_(fields? fields->size() : 0), val_(val)
{
if (fields) {
size_t idx = 0;
while (! fields->empty()) {
assert(idx < fields_.size());
fields_[idx++] = fields->front();
fields->pop_front();
}
}
}
ExpAggregate::element_t::element_t(const ExpAggregate::element_t&other)
{
fields_.reserve(other.fields_.size());
for(std::vector<choice_t*>::const_iterator it = other.fields_.begin();
it != other.fields_.end(); ++it) {
fields_.push_back(*it);
}
val_ = other.val_->clone();
}
ExpAggregate::element_t::~element_t()
{
for (size_t idx = 0 ; idx < fields_.size() ; idx += 1)
delete fields_[idx];
delete val_;
}
2011-02-20 02:47:30 +01:00
ExpArithmetic::ExpArithmetic(ExpArithmetic::fun_t op, Expression*op1, Expression*op2)
: ExpBinary(op1, op2), fun_(op)
{
// The xCONCAT type is not actually used.
assert(op != xCONCAT);
2011-02-20 02:47:30 +01:00
}
ExpArithmetic::~ExpArithmetic()
{
}
/*
* Store bitstrings in little-endian order.
*/
ExpBitstring::ExpBitstring(const char*val)
: value_(strlen(val))
{
for (size_t idx = value_.size() ; idx > 0 ; idx -= 1)
value_[idx-1] = *val++;
}
ExpBitstring::~ExpBitstring()
{
}
ExpCharacter::ExpCharacter(char val)
: value_(val)
{
}
ExpCharacter::~ExpCharacter()
{
}
ExpConcat::ExpConcat(Expression*op1, Expression*op2)
: operand1_(op1), operand2_(op2)
{
}
ExpConcat::~ExpConcat()
{
delete operand1_;
delete operand2_;
}
ExpConditional::ExpConditional(Expression*co, list<Expression*>*tru,
list<ExpConditional::else_t*>*fal)
: cond_(co)
{
if (tru) true_clause_.splice(true_clause_.end(), *tru);
if (fal) else_clause_.splice(else_clause_.end(), *fal);
}
ExpConditional::~ExpConditional()
{
delete cond_;
while (! true_clause_.empty()) {
Expression*tmp = true_clause_.front();
true_clause_.pop_front();
delete tmp;
}
while (! else_clause_.empty()) {
else_t*tmp = else_clause_.front();
else_clause_.pop_front();
delete tmp;
}
}
Expression*ExpConditional::clone() const
{
std::list<Expression*>*new_true_clause = NULL;
if(!true_clause_.empty()) {
new_true_clause = new std::list<Expression*>();
for(std::list<Expression*>::const_iterator it = true_clause_.begin();
it != true_clause_.end(); ++it) {
new_true_clause->push_back((*it)->clone());
}
}
std::list<else_t*>*new_else_clause = NULL;
if(!else_clause_.empty()) {
new_else_clause = new std::list<else_t*>();
for(std::list<else_t*>::const_iterator it = else_clause_.begin();
it != else_clause_.end(); ++it) {
new_else_clause->push_back(new else_t(**it));
}
}
return new ExpConditional(cond_->clone(), new_true_clause, new_else_clause);
}
ExpConditional::else_t::else_t(Expression*cond, std::list<Expression*>*tru)
: cond_(cond)
{
if (tru) true_clause_.splice(true_clause_.end(), *tru);
}
ExpConditional::else_t::else_t(const else_t&other)
2015-05-18 17:32:09 +02:00
: LineInfo(other)
{
cond_ = other.cond_->clone();
for(std::list<Expression*>::const_iterator it = other.true_clause_.begin();
it != other.true_clause_.end(); ++it) {
true_clause_.push_back((*it)->clone());
}
}
ExpConditional::else_t::~else_t()
{
delete cond_;
while (! true_clause_.empty()) {
Expression*tmp = true_clause_.front();
true_clause_.pop_front();
delete tmp;
}
}
ExpEdge::ExpEdge(ExpEdge::fun_t typ, Expression*op)
: ExpUnary(op), fun_(typ)
{
}
ExpEdge::~ExpEdge()
{
}
ExpFunc::ExpFunc(perm_string nn)
: name_(nn), def_(0)
{
}
ExpFunc::ExpFunc(perm_string nn, list<Expression*>*args)
: name_(nn), argv_(args->size()), def_(0)
{
for (size_t idx = 0; idx < argv_.size() ; idx += 1) {
ivl_assert(*this, !args->empty());
argv_[idx] = args->front();
args->pop_front();
}
ivl_assert(*this, args->empty());
}
ExpFunc::~ExpFunc()
{
for (size_t idx = 0 ; idx < argv_.size() ; idx += 1)
delete argv_[idx];
}
Expression*ExpFunc::clone() const {
std::list<Expression*>*new_args = NULL;
if(!argv_.empty()) {
new_args = new std::list<Expression*>();
for(std::vector<Expression*>::const_iterator it = argv_.begin();
it != argv_.end(); ++it)
new_args->push_back((*it)->clone());
}
ExpFunc*f = new ExpFunc(name_, new_args);
f->def_ = def_;
return f;
}
const VType* ExpFunc::func_ret_type() const
{
return def_ ? def_->peek_return_type() : NULL;
}
ExpInteger::ExpInteger(int64_t val)
: value_(val)
{
}
ExpInteger::~ExpInteger()
{
}
bool ExpInteger::evaluate(ScopeBase*, int64_t&val) const
{
val = value_;
return true;
}
2014-08-06 15:00:35 +02:00
ExpReal::ExpReal(double val)
: value_(val)
{
}
ExpReal::~ExpReal()
{
}
ExpLogical::ExpLogical(ExpLogical::fun_t ty, Expression*op1, Expression*op2)
2011-02-20 02:47:30 +01:00
: ExpBinary(op1, op2), fun_(ty)
{
}
ExpLogical::~ExpLogical()
{
}
ExpName::ExpName(perm_string nn)
: name_(nn), index_(0), lsb_(0)
{
}
ExpName::ExpName(perm_string nn, list<Expression*>*indices)
: name_(nn), index_(0), lsb_(0)
{
/* For now, assume a single index. */
ivl_assert(*this, indices->size() == 1);
index_ = indices->front();
indices->pop_front();
}
ExpName::ExpName(perm_string nn, Expression*msb, Expression*lsb)
: name_(nn), index_(msb), lsb_(lsb)
{
}
ExpName::ExpName(ExpName*prefix, perm_string nn)
: prefix_(prefix), name_(nn), index_(0), lsb_(0)
{
}
ExpName::ExpName(ExpName*prefix, perm_string nn, Expression*msb, Expression*lsb)
: prefix_(prefix), name_(nn), index_(msb), lsb_(lsb)
{
}
ExpName::~ExpName()
{
delete index_;
}
bool ExpName::symbolic_compare(const Expression*that) const
{
const ExpName*that_name = dynamic_cast<const ExpName*> (that);
if (that_name == 0)
return false;
if (name_ != that_name->name_)
return false;
if (that_name->index_ && !index_)
return false;
if (index_ && !that_name->index_)
return false;
if (index_) {
assert(that_name->index_);
return index_->symbolic_compare(that_name->index_);
}
return true;
}
void ExpName::set_range(Expression*msb, Expression*lsb)
{
assert(index_==0);
index_ = msb;
assert(lsb_==0);
lsb_ = lsb;
}
int ExpName::index_t::emit(ostream&out, Entity*ent, ScopeBase*scope)
{
int errors = 0;
out << "(";
if(idx_ && size_) {
errors += idx_->emit(out, ent, scope);
out << "*";
errors += size_->emit(out, ent, scope);
}
if(offset_) {
if(idx_ && size_)
out << "+";
errors += offset_->emit(out, ent, scope);
}
out << ")";
return errors;
}
ExpRelation::ExpRelation(ExpRelation::fun_t ty, Expression*op1, Expression*op2)
: ExpBinary(op1, op2), fun_(ty)
{
}
ExpRelation::~ExpRelation()
{
}
ExpShift::ExpShift(ExpShift::shift_t op, Expression*op1, Expression*op2)
: ExpBinary(op1, op2), shift_(op)
{
}
ExpString::ExpString(const char* value)
: value_(strlen(value))
{
2011-08-18 05:53:49 +02:00
for(size_t idx = 0; idx < value_.size(); idx += 1)
value_[idx] = value[idx];
}
ExpString::~ExpString()
{
}
ExpUAbs::ExpUAbs(Expression*op1)
: ExpUnary(op1)
{
}
ExpUAbs::~ExpUAbs()
{
}
ExpUNot::ExpUNot(Expression*op1)
: ExpUnary(op1)
{
}
ExpUNot::~ExpUNot()
{
}
2015-01-22 11:26:53 +01:00
ExpCast::ExpCast(Expression*base, const VType*type) :
base_(base), type_(type)
{
}
ExpCast::~ExpCast()
{
}
2015-01-23 12:13:28 +01:00
ExpNew::ExpNew(Expression*size) :
size_(size)
{
}
ExpNew::~ExpNew()
{
delete size_;
}