iverilog/vvp/vpi_priv.cc

2039 lines
53 KiB
C++
Raw Permalink Normal View History

/*
* Copyright (c) 2008-2025 Stephen Williams (steve@icarus.com)
2023-08-17 16:09:20 +02:00
* Copyright (c) 2023 Leo Moser (leo.moser@pm.me)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
2012-08-29 03:41:23 +02:00
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "version_base.h"
# include "vpi_priv.h"
# include "schedule.h"
# include "logic.h"
# include "part.h"
# include "concat.h"
#ifdef CHECK_WITH_VALGRIND
# include "vvp_cleanup.h"
#endif
# include <vector>
# include <cstdio>
# include <cstdarg>
# include <cstring>
# include <cassert>
# include <cstdlib>
# include <cmath>
2010-11-23 04:41:00 +01:00
# include <iostream>
using namespace std;
vpi_mode_t vpi_mode_flag = VPI_MODE_NONE;
2003-03-12 03:50:32 +01:00
FILE*vpi_trace = 0;
static s_vpi_vlog_info vpi_vlog_info;
static s_vpi_error_info vpip_last_error = { 0, 0, 0, 0, 0, 0, 0 };
const char* direction_as_string(int dir)
{
switch (dir) {
case vpiInput:
return "input";
case vpiOutput:
return "output";
case vpiInout:
return "inout";
case vpiMixedIO:
return "mixed io";
case vpiNoDirection:
return "no direction";
default:
return "INVALID-DIRECTION";
}
}
__vpiHandle::~__vpiHandle()
{ }
int __vpiHandle::vpi_get(int)
{ return vpiUndefined; }
char* __vpiHandle::vpi_get_str(int)
{ return 0; }
void __vpiHandle::vpi_get_value(p_vpi_value)
{ }
vpiHandle __vpiHandle::vpi_put_value(p_vpi_value, int)
{ return 0; }
vpiHandle __vpiHandle::vpi_handle(int)
{ return 0; }
vpiHandle __vpiHandle::vpi_iterate(int)
{ return 0; }
vpiHandle __vpiHandle::vpi_index(int)
{ return 0; }
void __vpiHandle::vpi_get_delays(p_vpi_delay)
{ }
void __vpiHandle::vpi_put_delays(p_vpi_delay)
{ }
__vpiBaseVar::__vpiBaseVar(__vpiScope*scope, const char*name, vvp_net_t*net)
: scope_(scope), name_(name), net_(net)
{
}
#ifdef CHECK_WITH_VALGRIND
__vpiBaseVar::~__vpiBaseVar()
{
vvp_net_delete(net_);
}
#endif
2012-01-21 20:59:49 +01:00
/*
* The default behavior for the vpi_free_object to an object is to
* suppress the actual operation. This is because handles are
* generally allocated semi-permanently within vvp context. Dynamic
* objects will override the free_object_fun method to return an
* appropriately effective function.
*/
static int suppress_free(vpiHandle)
{ return 1; }
__vpiHandle::free_object_fun_t __vpiHandle::free_object_fun(void)
2012-01-21 20:59:49 +01:00
{ return &suppress_free; }
/*
* The vpip_string function creates a constant string from the pass
* input. This constant string is permanently allocated from an
* efficient string buffer store.
*/
struct vpip_string_chunk {
struct vpip_string_chunk*next;
char data[64*1024 - sizeof (struct vpip_string_chunk*)];
};
unsigned vpip_size(__vpiSignal *sig)
{
return abs(sig->msb.get_value() - sig->lsb.get_value()) + 1;
}
__vpiScope* vpip_scope(__vpiSignal*sig)
{
if (sig->is_netarray)
return static_cast<__vpiScope*>(vpi_handle(vpiScope,
sig->within.parent));
else
return sig->within.scope;
}
__vpiScope* vpip_scope(__vpiRealVar*sig)
{
if (sig->is_netarray)
return static_cast<__vpiScope*>(vpi_handle(vpiScope,
sig->within.parent));
else
return sig->within.scope;
}
vpiHandle vpip_module(__vpiScope*scope)
{
while(scope && scope->get_type_code() != vpiModule) {
scope = scope->scope;
}
assert(scope);
return scope;
}
const char *vpip_string(const char*str)
{
static vpip_string_chunk first_chunk = {0, {0}};
static vpip_string_chunk*chunk_list = &first_chunk;
static unsigned chunk_fill = 0;
unsigned len = strlen(str);
assert( (len+1) <= sizeof chunk_list->data );
if ( (len+1) > (sizeof chunk_list->data - chunk_fill) ) {
vpip_string_chunk*tmp = new vpip_string_chunk;
tmp->next = chunk_list;
chunk_list = tmp;
chunk_fill = 0;
}
char*res = chunk_list->data + chunk_fill;
chunk_fill += len + 1;
strcpy(res, str);
return res;
}
static unsigned hash_string(const char*text)
{
unsigned h = 0;
while (*text) {
2015-10-02 18:42:36 +02:00
h = (h << 4) ^ (h >> 28) ^ (unsigned)*text;
text += 1;
}
return h;
}
const char* vpip_name_string(const char*text)
{
const unsigned HASH_SIZE = 4096;
static const char*hash_table[HASH_SIZE] = {0};
unsigned hash_value = hash_string(text) % HASH_SIZE;
/* If we easily find the string in the hash table, then return
that and be done. */
if (hash_table[hash_value]
&& (strcmp(hash_table[hash_value], text) == 0)) {
return hash_table[hash_value];
}
/* The existing hash entry is not a match. Replace it with the
newly allocated value, and return the new pointer as the
result to the add. */
const char*res = vpip_string(text);
hash_table[hash_value] = res;
return res;
}
PLI_INT32 vpi_chk_error(p_vpi_error_info info)
{
2002-08-24 07:02:58 +02:00
if (vpip_last_error.state == 0)
return 0;
info->state = vpip_last_error.state;
info->level = vpip_last_error.level;
info->message = vpip_last_error.message;
info->product = vpi_vlog_info.product;
2025-10-13 22:14:57 +02:00
info->code = (char *)"";
info->file = 0;
info->line = 0;
return info->level;
}
PLI_INT32 vpi_compare_objects(vpiHandle obj1, vpiHandle obj2)
{
assert(obj1);
assert(obj2);
// Does this actually work for all cases?
if (obj1 != obj2) return 0;
else return 1;
}
/*
* Copy the internal information to the data structure. Do not free or
* change the tfname/user_data since they are a pointer to the real
* string/data values. We also support passing a task or function handle
* instead of just a handle to a vpiUserSystf.
*/
void vpi_get_systf_info(vpiHandle ref, p_vpi_systf_data data)
{
struct __vpiUserSystf* rfp = dynamic_cast<__vpiUserSystf*>(ref);
if (rfp == 0) {
struct __vpiSysTaskCall*call = dynamic_cast<__vpiSysTaskCall*>(ref);
assert(call);
2010-04-12 18:59:45 +02:00
rfp = call->defn;
}
/* Assert that vpiUserDefn is true! */
assert(rfp->is_user_defn);
data->type = rfp->info.type;
data->sysfunctype = rfp->info.sysfunctype;
data->tfname = rfp->info.tfname;
data->calltf = rfp->info.calltf;
data->compiletf = rfp->info.compiletf;
data->sizetf = rfp->info.sizetf;
data->user_data = rfp->info.user_data;
}
/*
* When a task is called, this value is set so that vpi_handle can
* fathom the vpi_handle(vpiSysTfCall,0) function.
*/
struct __vpiSysTaskCall*vpip_cur_task = 0;
PLI_INT32 vpi_free_object(vpiHandle ref)
{
2003-05-30 06:08:28 +02:00
int rtn;
if (vpi_trace) {
fprintf(vpi_trace, "vpi_free_object(%p)", ref);
fflush(vpi_trace);
}
2002-06-02 21:05:50 +02:00
assert(ref);
__vpiHandle::free_object_fun_t fun = ref->free_object_fun();
2012-01-21 20:59:49 +01:00
rtn = fun (ref);
2003-05-30 06:08:28 +02:00
if (vpi_trace)
fprintf(vpi_trace, " --> %d\n", rtn);
2003-05-30 06:08:28 +02:00
return rtn;
}
PLI_INT32 vpi_release_handle(vpiHandle ref)
{
// Since SystemVerilog vpi_free_object() has been
// renamed vpi_release_handle(), and thus
// vpi_free_object() has been deprecated.
return vpi_free_object(ref);
}
static int vpip_get_global(int property)
{
switch (property) {
case vpiTimeUnit:
case vpiTimePrecision:
return vpip_get_time_precision();
default:
fprintf(stderr, "vpi error: bad global property: %d\n", property);
assert(0);
2003-03-12 03:50:32 +01:00
return vpiUndefined;
}
}
2003-03-14 06:02:34 +01:00
static const char* vpi_property_str(PLI_INT32 code)
{
static char buf[32];
switch (code) {
case vpiConstType:
return "vpiConstType";
case vpiName:
return "vpiName";
case vpiFullName:
return "vpiFullName";
case vpiTimeUnit:
return "vpiTimeUnit";
case vpiTimePrecision:
return "vpiTimePrecision";
case vpiSize:
return "vpiSize";
2003-03-14 06:02:34 +01:00
default:
snprintf(buf, sizeof(buf), "%d", (int)code);
2003-03-14 06:02:34 +01:00
}
return buf;
}
const char* vpi_type_as_string(PLI_INT32 code)
2003-03-14 06:02:34 +01:00
{
static char buf[32];
switch (code) {
case vpiArrayType:
return "vpiArrayType";
case vpiBitVar:
return "vpiBitVar";
case vpiByteVar:
return "vpiByteVar";
case vpiClassVar:
return "vpiClassVar";
2003-03-14 06:02:34 +01:00
case vpiConstant:
return "vpiConstant";
case vpiEnumTypespec:
return "vpiEnumTypespec";
case vpiFunction:
return "vpiFunction";
case vpiGenScope:
return "vpiGenScope";
case vpiIntVar:
return "vpiIntVar";
case vpiIntegerVar:
return "vpiIntegerVar";
case vpiIterator:
return "vpiIterator";
case vpiLongIntVar:
return "vpiLongIntVar";
case vpiMemory:
return "vpiMemory";
case vpiMemoryWord:
return "vpiMemoryWord";
2003-03-14 06:02:34 +01:00
case vpiModule:
return "vpiModule";
case vpiNamedBegin:
return "vpiNamedBegin";
case vpiNamedEvent:
return "vpiNamedEvent";
case vpiNamedFork:
return "vpiNamedFork";
case vpiPackage:
return "vpiPackage";
case vpiPathTerm:
return "vpiPathTerm";
case vpiPort:
return "vpiPort";
2003-03-14 06:02:34 +01:00
case vpiNet:
return "vpiNet";
case vpiNetArray:
return "vpiNetArray";
2020-05-31 09:24:32 +02:00
case vpiNetBit:
return "vpiNetBit";
case vpiParameter:
return "vpiParameter";
case vpiPartSelect:
return "vpiPartSelect";
case vpiRealVar:
return "vpiRealVar";
2003-03-14 06:02:34 +01:00
case vpiReg:
return "vpiReg";
2020-05-31 09:24:32 +02:00
case vpiRegBit:
return "vpiRegBit";
case vpiShortIntVar:
return "vpiShortIntVar";
case vpiStringVar:
return "vpiStringVar";
case vpiSysFuncCall:
return "vpiSysFuncCall";
case vpiSysTaskCall:
return "vpiSysTaskCall";
case vpiTask:
return "vpiTask";
case vpiTimeVar:
return "vpiTimeVar";
case vpiUserSystf:
return "vpiUserSystf";
2003-03-14 06:02:34 +01:00
default:
snprintf(buf, sizeof(buf), "%d", (int)code);
2003-03-14 06:02:34 +01:00
}
return buf;
}
PLI_INT32 vpi_get(int property, vpiHandle ref)
{
/* We don't care what the ref is there is only one delay selection. */
if (property == _vpiDelaySelection) return vpip_delay_selection;
if (ref == 0)
return vpip_get_global(property);
if (property == vpiType) {
if (vpi_trace) {
2003-03-14 06:02:34 +01:00
fprintf(vpi_trace, "vpi_get(vpiType, %p) --> %s\n",
ref, vpi_type_as_string(ref->get_type_code()));
}
if (ref->get_type_code() == vpiMemory && is_net_array(ref))
return vpiNetArray;
else
return ref->get_type_code();
}
int res = ref->vpi_get(property);
2003-03-12 03:50:32 +01:00
if (vpi_trace) {
2003-03-14 06:02:34 +01:00
fprintf(vpi_trace, "vpi_get(%s, %p) --> %d\n",
vpi_property_str(property), ref, res);
2003-03-12 03:50:32 +01:00
}
return res;
}
2004-02-18 18:52:00 +01:00
char* vpi_get_str(PLI_INT32 property, vpiHandle ref)
{
/* We don't care what the ref is there is only one delay selection. */
if (property == _vpiDelaySelection) {
switch (vpip_delay_selection) {
case _vpiDelaySelMinimum:
return simple_set_rbuf_str("MINIMUM");
case _vpiDelaySelTypical:
return simple_set_rbuf_str("TYPICAL");
case _vpiDelaySelMaximum:
return simple_set_rbuf_str("MAXIMUM");
default:
assert(0);
}
}
if (ref == 0) {
2003-03-14 06:02:34 +01:00
fprintf(stderr, "vpi error: vpi_get_str(%s, 0) called "
"with null vpiHandle.\n", vpi_property_str(property));
return 0;
}
if (property == vpiType) {
if (vpi_trace) {
fprintf(vpi_trace, "vpi_get(vpiType, %p) --> %s\n",
ref, vpi_type_as_string(ref->get_type_code()));
}
PLI_INT32 type;
if (ref->get_type_code() == vpiMemory && is_net_array(ref))
type = vpiNetArray;
else
type = ref->get_type_code();
return (char *)vpi_type_as_string(type);
}
char*res = ref->vpi_get_str(property);
2003-03-12 03:50:32 +01:00
if (vpi_trace) {
2003-03-14 06:02:34 +01:00
fprintf(vpi_trace, "vpi_get_str(%s, %p) --> %s\n",
vpi_property_str(property), ref, res? res : "<NULL>");
2003-03-12 03:50:32 +01:00
}
return res;
}
__vpiScope*vpip_timescale_scope_from_handle(vpiHandle obj)
2003-04-27 06:19:24 +02:00
{
struct __vpiSysTaskCall*task;
2003-05-02 06:29:57 +02:00
struct __vpiSignal*signal;
struct __vpiRealVar*real;
2025-10-13 22:14:57 +02:00
const __vpiNamedEvent*event;
2003-04-27 06:19:24 +02:00
switch (obj->get_type_code()) {
2003-04-27 06:19:24 +02:00
case vpiSysTaskCall:
task = dynamic_cast<__vpiSysTaskCall*>(obj);
return task->scope;
2003-04-27 06:19:24 +02:00
case vpiModule:
return dynamic_cast<__vpiScope*>(obj);
2003-04-27 06:19:24 +02:00
2003-05-02 06:29:57 +02:00
case vpiNet:
case vpiReg:
case vpiIntegerVar:
case vpiBitVar:
case vpiByteVar:
case vpiShortIntVar:
case vpiIntVar:
case vpiLongIntVar:
signal = dynamic_cast<__vpiSignal*>(obj);
return vpip_scope(signal);
case vpiRealVar:
real = dynamic_cast<__vpiRealVar*>(obj);
return vpip_scope(real);
2003-05-02 06:29:57 +02:00
case vpiNamedEvent:
event = dynamic_cast<__vpiNamedEvent*>(obj);
return event->get_scope();
case vpiMemory:
case vpiMemoryWord:
case vpiPartSelect:
return dynamic_cast<__vpiScope*>(obj->vpi_handle(vpiScope));
2003-04-27 06:19:24 +02:00
default:
fprintf(stderr, "ERROR: vpip_scope_from_handle called with "
2021-06-18 07:44:48 +02:00
"object handle type=%d\n", obj->get_type_code());
assert(0);
return 0;
}
}
int vpip_time_units_from_handle(vpiHandle obj)
{
if (obj == 0)
return vpip_get_time_precision();
2025-10-13 22:14:57 +02:00
const __vpiScope*scope = vpip_timescale_scope_from_handle(obj);
if (scope == 0)
return vpip_get_time_precision();
return scope->time_units;
}
int vpip_time_precision_from_handle(vpiHandle obj)
{
if (obj == 0)
return vpip_get_time_precision();
2025-10-13 22:14:57 +02:00
const __vpiScope*scope = vpip_timescale_scope_from_handle(obj);
if (scope == 0)
return vpip_get_time_precision();
return scope->time_precision;
2003-04-27 06:19:24 +02:00
}
double vpip_scaled_time_from_handle(vvp_time64_t time, vpiHandle obj)
{
int scale = vpip_get_time_precision() -
vpip_time_units_from_handle(obj);
if (scale >= 0)
return (double)time * pow(10.0, scale);
else
return (double)time / pow(10.0, -scale);
}
void vpi_get_time(vpiHandle obj, s_vpi_time*vp)
{
vvp_time64_t time;
2003-04-27 06:19:24 +02:00
2002-06-02 21:05:50 +02:00
assert(vp);
time = schedule_simtime();
2003-04-27 06:19:24 +02:00
switch (vp->type) {
case vpiSimTime:
vp->high = (time >> 32) & 0xffffffff;
vp->low = time & 0xffffffff;
2003-04-27 06:19:24 +02:00
break;
case vpiScaledRealTime:
vp->real = vpip_scaled_time_from_handle(time, obj);
2003-04-27 06:19:24 +02:00
break;
default:
fprintf(stderr, "vpi_get_time: unknown type: %d\n", (int)vp->type);
2003-04-27 06:19:24 +02:00
assert(0);
break;
}
}
PLI_INT32 vpi_get_vlog_info(p_vpi_vlog_info vlog_info_p)
2002-01-09 04:15:23 +01:00
{
2002-04-07 02:46:21 +02:00
if (vlog_info_p != 0) {
*vlog_info_p = vpi_vlog_info;
return 1;
} else {
return 0;
2002-01-09 04:15:23 +01:00
}
}
void vpi_set_vlog_info(int argc, char** argv)
{
static char icarus_product[] = "Icarus Verilog";
static char icarus_version[] = VERSION;
vpi_vlog_info.product = icarus_product;
vpi_vlog_info.version = icarus_version;
2002-01-09 04:15:23 +01:00
vpi_vlog_info.argc = argc;
vpi_vlog_info.argv = argv;
2003-03-12 03:50:32 +01:00
2003-06-25 06:04:19 +02:00
static char trace_buf[1024];
if (const char*path = getenv("VPI_TRACE")) {
if (!strcmp(path,"-"))
vpi_trace = stdout;
else {
vpi_trace = fopen(path, "w");
if (!vpi_trace) {
perror(path);
exit(1);
}
2003-06-25 06:04:19 +02:00
setvbuf(vpi_trace, trace_buf, _IOLBF, sizeof(trace_buf));
}
}
2002-01-09 04:15:23 +01:00
}
static void vec4_get_value_string(const vvp_vector4_t&word_val, unsigned width,
s_vpi_value*vp)
{
unsigned nchar = width / 8;
unsigned tail = width % 8;
2025-10-13 22:14:57 +02:00
char*rbuf = static_cast<char *>(need_result_buf(nchar + 1, RBUF_VAL));
char*cp = rbuf;
if (tail > 0) {
char char_val = 0;
for (unsigned idx = width-tail; idx < width ; idx += 1) {
vvp_bit4_t val = word_val.value(idx);
if (val == BIT4_1)
char_val |= 1 << idx;
}
if (char_val != 0)
*cp++ = char_val;
else if (cp != rbuf)
*cp++ = ' ';
}
for (unsigned idx = 0 ; idx < nchar ; idx += 1) {
unsigned bit = (nchar - idx - 1) * 8;
char char_val = 0;
for (unsigned bdx = 0 ; bdx < 8 ; bdx += 1) {
vvp_bit4_t val = word_val.value(bit+bdx);
if (val == BIT4_1)
char_val |= 1 << bdx;
}
// Ignore leading null-bytes and replace other null-bytes with space.
// The LRM is not entirely clear on how null bytes should be handled.
// This is the implementation chosen for iverilog.
if (char_val != 0)
*cp++ = char_val;
else if (cp != rbuf)
*cp++ = ' ';
}
*cp = 0;
vp->value.str = rbuf;
}
2006-03-06 06:43:15 +01:00
/*
* This is a generic function to convert a vvp_vector4_t value into a
* vpi_value structure. The format is selected by the format of the
* value pointer. The width is the real width of the word, in case the
* word_val width is not accurate.
*/
void vpip_vec4_get_value(const vvp_vector4_t&word_val, unsigned width,
bool signed_flag, s_vpi_value*vp)
{
char *rbuf = 0;
switch (vp->format) {
default:
fprintf(stderr, "sorry: Format %d not implemented for "
"getting vector values.\n", (int)vp->format);
assert(0);
case vpiSuppressVal:
break;
2006-03-06 06:43:15 +01:00
case vpiBinStrVal:
2025-10-13 22:14:57 +02:00
rbuf = static_cast<char *>(need_result_buf(width+1, RBUF_VAL));
2006-03-06 06:43:15 +01:00
for (unsigned idx = 0 ; idx < width ; idx += 1) {
vvp_bit4_t bit = word_val.value(idx);
rbuf[width-idx-1] = vvp_bit4_to_ascii(bit);
2006-03-06 06:43:15 +01:00
}
rbuf[width] = 0;
vp->value.str = rbuf;
break;
case vpiOctStrVal: {
unsigned hwid = ((width+2) / 3) + 1;
2025-10-13 22:14:57 +02:00
rbuf = static_cast<char *>(need_result_buf(hwid, RBUF_VAL));
vpip_vec4_to_oct_str(word_val, rbuf, hwid);
2006-03-06 06:43:15 +01:00
vp->value.str = rbuf;
break;
}
case vpiDecStrVal: {
// HERE need a better estimate.
2025-10-13 22:14:57 +02:00
rbuf = static_cast<char *>(need_result_buf(width+1, RBUF_VAL));
2006-03-06 06:43:15 +01:00
vpip_vec4_to_dec_str(word_val, rbuf, width+1, signed_flag);
vp->value.str = rbuf;
break;
}
case vpiHexStrVal: {
unsigned hwid = ((width + 3) / 4) + 1;
2025-10-13 22:14:57 +02:00
rbuf = static_cast<char *>(need_result_buf(hwid, RBUF_VAL));
vpip_vec4_to_hex_str(word_val, rbuf, hwid);
2006-03-06 06:43:15 +01:00
vp->value.str = rbuf;
break;
}
case vpiScalarVal: {
// scalars should be of size 1
assert(width == 1);
switch(word_val.value(0)) {
case BIT4_0:
vp->value.scalar = vpi0;
break;
case BIT4_1:
vp->value.scalar = vpi1;
break;
case BIT4_X:
vp->value.scalar = vpiX;
break;
case BIT4_Z:
vp->value.scalar = vpiZ;
break;
}
break;
}
2006-03-06 06:43:15 +01:00
case vpiIntVal: {
long val = 0;
vvp_bit4_t pad = BIT4_0;
if (signed_flag && word_val.size() > 0)
pad = word_val.value(word_val.size()-1);
2007-03-07 01:38:15 +01:00
for (unsigned idx = 0 ; idx < 8*sizeof(val) ; idx += 1) {
2006-03-06 06:43:15 +01:00
vvp_bit4_t val4 = pad;
if (idx < word_val.size())
val4 = word_val.value(idx);
if (val4 == BIT4_1)
val |= 1L << idx;
}
vp->value.integer = val;
break;
}
case vpiObjTypeVal:
// Use the following case to actually set the value!
vp->format = vpiVectorVal;
// fallthrough
2006-03-06 06:43:15 +01:00
case vpiVectorVal: {
unsigned hwid = (width + 31)/32;
2006-03-06 06:43:15 +01:00
2025-10-13 22:14:57 +02:00
s_vpi_vecval *op = static_cast<p_vpi_vecval>
(need_result_buf(hwid * sizeof(s_vpi_vecval), RBUF_VAL));
2006-03-06 06:43:15 +01:00
vp->value.vector = op;
op->aval = op->bval = 0;
for (unsigned idx = 0 ; idx < width ; idx += 1) {
switch (word_val.value(idx)) {
case BIT4_0:
op->aval &= ~(1 << idx % 32);
op->bval &= ~(1 << idx % 32);
break;
case BIT4_1:
op->aval |= (1 << idx % 32);
op->bval &= ~(1 << idx % 32);
break;
case BIT4_X:
op->aval |= (1 << idx % 32);
op->bval |= (1 << idx % 32);
break;
case BIT4_Z:
op->aval &= ~(1 << idx % 32);
op->bval |= (1 << idx % 32);
break;
}
if (!((idx+1) % 32) && (idx+1 < width)) {
op++;
op->aval = op->bval = 0;
}
}
break;
}
case vpiStringVal:
vec4_get_value_string(word_val, width, vp);
break;
2006-03-06 06:43:15 +01:00
case vpiRealVal:
vector4_to_value(word_val, vp->value.real, signed_flag);
2006-03-06 06:43:15 +01:00
break;
}
}
void vpip_vec2_get_value(const vvp_vector2_t&word_val, unsigned width,
bool signed_flag, s_vpi_value*vp)
{
switch (vp->format) {
default:
fprintf(stderr, "sorry: Format %d not implemented for "
"getting vector2 values.\n", (int)vp->format);
assert(0);
case vpiSuppressVal:
break;
case vpiObjTypeVal:
vp->format = vpiIntVal;
// fallthrough
case vpiIntVal:
2010-11-23 04:41:00 +01:00
vector2_to_value(word_val, vp->value.integer, signed_flag);
break;
case vpiVectorVal: {
unsigned hwid = (width + 31)/32;
2025-10-13 22:14:57 +02:00
s_vpi_vecval *op = static_cast<p_vpi_vecval>
(need_result_buf(hwid * sizeof(s_vpi_vecval), RBUF_VAL));
vp->value.vector = op;
op->aval = op->bval = 0;
for (unsigned idx = 0 ; idx < width ; idx += 1) {
if (word_val.value(idx)) {
op->aval |= (1 << idx % 32);
op->bval &= ~(1 << idx % 32);
} else {
op->aval &= ~(1 << idx % 32);
op->bval &= ~(1 << idx % 32);
}
if (!((idx+1) % 32) && (idx+1 < width)) {
op++;
op->aval = op->bval = 0;
}
}
break;
}
}
}
/*
* Convert a real value to the appropriate integer.
*/
static PLI_INT32 get_real_as_int(double real)
2006-03-06 06:43:15 +01:00
{
double rtn;
2006-03-06 06:43:15 +01:00
/* We would normally want to return 'bx for a NaN or
* +/- infinity, but for an integer the standard says
* to convert 'bx to 0, so we just return 0. */
if (real != real || (real && (real == 0.5*real))) {
return 0;
}
2006-03-06 06:43:15 +01:00
/* Round away from zero. */
if (real >= 0.0) {
rtn = floor(real);
if (real >= (rtn + 0.5)) rtn += 1.0;
} else {
rtn = ceil(real);
if (real <= (rtn - 0.5)) rtn -= 1.0;
}
2006-03-06 06:43:15 +01:00
return (PLI_INT32) rtn;
}
/*
* This is a generic function to convert a double value into a
* vpi_value structure. The format is selected by the format of the
* value pointer.
*/
void vpip_real_get_value(double real, s_vpi_value*vp)
{
char *rbuf = 0;
switch (vp->format) {
default:
fprintf(stderr, "sorry: Format %d not implemented for "
"getting real values.\n", (int)vp->format);
assert(0);
case vpiSuppressVal:
break;
case vpiObjTypeVal:
// Use the following case to actually set the value!
vp->format = vpiRealVal;
// fallthrough
case vpiRealVal:
vp->value.real = real;
break;
case vpiIntVal:
vp->value.integer = get_real_as_int(real);
break;
case vpiDecStrVal:
2025-10-13 22:14:57 +02:00
rbuf = static_cast<char *>(need_result_buf(1025, RBUF_VAL));
vpip_vec4_to_dec_str(vvp_vector4_t(1024, real), rbuf, 1025, true);
vp->value.str = rbuf;
break;
2006-03-06 06:43:15 +01:00
}
}
double real_from_vpi_value(s_vpi_value*vp)
{
vvp_vector4_t vec4(1024);
double result;
bool is_signed = false;
switch (vp->format) {
default:
fprintf(stderr, "sorry: Format %d not implemented for "
"putting real values.\n", (int)vp->format);
assert(0);
case vpiRealVal:
result = vp->value.real;
break;
case vpiIntVal:
result = (double) vp->value.integer;
break;
case vpiBinStrVal:
vpip_bin_str_to_vec4(vec4, vp->value.str);
if (vp->value.str[0] == '-') is_signed = true;
vector4_to_value(vec4, result, is_signed);
break;
case vpiOctStrVal:
vpip_oct_str_to_vec4(vec4, vp->value.str);
if (vp->value.str[0] == '-') is_signed = true;
vector4_to_value(vec4, result, is_signed);
break;
case vpiDecStrVal:
vpip_dec_str_to_vec4(vec4, vp->value.str);
if (vp->value.str[0] == '-') is_signed = true;
vector4_to_value(vec4, result, is_signed);
break;
case vpiHexStrVal:
vpip_hex_str_to_vec4(vec4, vp->value.str);
if (vp->value.str[0] == '-') is_signed = true;
vector4_to_value(vec4, result, is_signed);
break;
2006-03-06 06:43:15 +01:00
}
return result;
2006-03-06 06:43:15 +01:00
}
void vpip_string_get_value(const string&val, s_vpi_value*vp)
{
char *rbuf = 0;
switch (vp->format) {
default:
fprintf(stderr, "sorry: Format %d not implemented for "
"getting string values.\n", (int)vp->format);
assert(0);
case vpiSuppressVal:
break;
case vpiObjTypeVal:
// Use the following case to actually set the value!
vp->format = vpiStringVal;
// fallthrough
case vpiStringVal:
2025-10-13 22:14:57 +02:00
rbuf = static_cast<char *>(need_result_buf(val.size() + 1, RBUF_VAL));
strcpy(rbuf, val.c_str());
vp->value.str = rbuf;
break;
}
}
void vpi_get_value(vpiHandle expr, s_vpi_value*vp)
{
2002-06-02 21:05:50 +02:00
assert(expr);
assert(vp);
2003-03-12 03:50:32 +01:00
// Never bother with suppressed values. All the derived
// classes can ignore this type.
if (vp->format == vpiSuppressVal)
return;
expr->vpi_get_value(vp);
if (vpi_trace) switch (vp->format) {
2003-03-12 03:50:32 +01:00
case vpiStringVal:
fprintf(vpi_trace,"vpi_get_value(%p=<%d>) -> string=\"%s\"\n",
expr, expr->get_type_code(), vp->value.str);
2003-03-12 03:50:32 +01:00
break;
case vpiBinStrVal:
fprintf(vpi_trace, "vpi_get_value(<%d>...) -> binstr=%s\n",
expr->get_type_code(), vp->value.str);
2003-03-12 03:50:32 +01:00
break;
case vpiIntVal:
fprintf(vpi_trace, "vpi_get_value(<%d>...) -> int=%d\n",
expr->get_type_code(), (int)vp->value.integer);
break;
case vpiSuppressVal:
fprintf(vpi_trace, "vpi_get_value(<%d>...) -> <suppress>\n",
expr->get_type_code());
2003-03-12 03:50:32 +01:00
break;
default:
fprintf(vpi_trace, "vpi_get_value(<%d>...) -> <%d>=?\n",
expr->get_type_code(), (int)vp->format);
2003-03-12 03:50:32 +01:00
}
}
struct vpip_put_value_event : vvp_gen_event_s {
vpiHandle handle;
s_vpi_value value;
int flags;
virtual void run_run() override;
2025-10-13 22:14:57 +02:00
~vpip_put_value_event() override { }
};
void vpip_put_value_event::run_run()
{
handle->vpi_put_value(&value, flags);
switch (value.format) {
/* Free the copied string. */
case vpiBinStrVal:
case vpiOctStrVal:
case vpiDecStrVal:
case vpiHexStrVal:
case vpiStringVal:
free(value.value.str);
break;
/* Free the copied time structure. */
case vpiTimeVal:
free(value.value.time);
break;
/* Free the copied vector structure. */
case vpiVectorVal:
free(value.value.vector);
break;
/* Free the copied strength structure. */
case vpiStrengthVal:
free(value.value.strength);
break;
/* Everything else is static in the structure. */
default:
break;
}
}
/* Make a copy of a pointer to a time structure. */
2022-12-28 08:59:39 +01:00
static t_vpi_time *timedup(const t_vpi_time *val)
{
t_vpi_time *rtn;
rtn = static_cast<t_vpi_time *> (malloc(sizeof(t_vpi_time)));
*rtn = *val;
return rtn;
}
/* Make a copy of a pointer to a vector value structure. */
static t_vpi_vecval *vectordup(t_vpi_vecval *val, PLI_INT32 size)
{
unsigned num_bytes;
t_vpi_vecval *rtn;
assert(size > 0);
num_bytes = ((size + 31)/32)*sizeof(t_vpi_vecval);
rtn = static_cast<t_vpi_vecval *> (malloc(num_bytes));
memcpy(rtn, val, num_bytes);
return rtn;
}
/* Make a copy of a pointer to a strength structure. */
2022-12-28 08:59:39 +01:00
static t_vpi_strengthval *strengthdup(const t_vpi_strengthval *val)
{
t_vpi_strengthval *rtn;
rtn = static_cast<t_vpi_strengthval *>
(malloc(sizeof(t_vpi_strengthval)));
*rtn = *val;
return rtn;
}
vpiHandle vpi_put_value(vpiHandle obj, s_vpi_value*vp,
s_vpi_time*when, PLI_INT32 flags)
{
2002-06-02 21:05:50 +02:00
assert(obj);
flags &= ~vpiReturnEvent;
if (flags!=vpiNoDelay && flags!=vpiForceFlag && flags!=vpiReleaseFlag) {
vvp_time64_t dly;
int scale;
if (vpi_get(vpiAutomatic, obj)) {
fprintf(stderr, "VPI error: cannot put a value with "
"a delay on automatically allocated "
"variable '%s'.\n",
vpi_get_str(vpiName, obj));
return 0;
}
assert(when != 0);
switch (when->type) {
case vpiScaledRealTime:
scale = vpip_time_units_from_handle(obj) -
vpip_get_time_precision();
if (scale >= 0) {
dly = (vvp_time64_t)(when->real * pow(10.0, scale));
} else {
dly = (vvp_time64_t)(when->real / pow(10.0, -scale));
}
break;
case vpiSimTime:
dly = vpip_timestruct_to_time(when);
break;
default:
dly = 0;
break;
}
if ((dly == 0) && schedule_at_rosync()) {
fprintf(stderr, "VPI error: attempted to put a value to "
"variable '%s' during a read-only synch "
"callback.\n", vpi_get_str(vpiName, obj));
return 0;
}
vpip_put_value_event*put = new vpip_put_value_event;
put->handle = obj;
if (dynamic_cast<__vpiNamedEvent*>(obj)) {
put->value.format = vpiIntVal;
put->value.value.integer = 0;
} else {
assert(vp);
put->value = *vp;
}
/* Since this is a scheduled put event we must copy any pointer
* data to keep it available until the event is actually run. */
switch (put->value.format) {
/* Copy the string items. */
case vpiBinStrVal:
case vpiOctStrVal:
case vpiDecStrVal:
case vpiHexStrVal:
case vpiStringVal:
put->value.value.str = strdup(put->value.value.str);
break;
/* Copy a time pointer item. */
case vpiTimeVal:
put->value.value.time = timedup(put->value.value.time);
break;
/* Copy a vector pointer item. */
case vpiVectorVal:
put->value.value.vector = vectordup(put->value.value.vector,
vpi_get(vpiSize, obj));
break;
/* Copy a strength pointer item. */
case vpiStrengthVal:
put->value.value.strength =
strengthdup(put->value.value.strength);
break;
/* Everything thing else is already in the structure. */
default:
break;
}
put->flags = flags;
schedule_generic(put, dly, false, true, true);
return 0;
}
if (schedule_at_rosync()) {
fprintf(stderr, "VPI error: attempted to put a value to "
"variable '%s' during a read-only synch "
"callback.\n", vpi_get_str(vpiName, obj));
return 0;
}
obj->vpi_put_value(vp, flags);
return 0;
}
2004-02-18 18:52:00 +01:00
vpiHandle vpi_handle(PLI_INT32 type, vpiHandle ref)
{
vpiHandle res = 0;
2003-03-14 06:02:34 +01:00
if (ref == 0) {
// A few types can apply to a nil handle. These are ways
// that the current function can get started finding things.
switch (type) {
case vpiScope:
// The IEEE1364-2005 doesn't seem to allow this,
// but some users seem to think it's handy, so
// return the scope that contains this SysTfCall.
assert(vpip_cur_task);
res = vpip_cur_task->vpi_handle(vpiScope);
break;
case vpiSysTfCall:
// This is how VPI users get a first handle into
// the system. This is the handle of the system
// task/function call currently being executed.
if (vpi_trace) {
fprintf(vpi_trace, "vpi_handle(vpiSysTfCall, 0) "
"-> %p (%s)\n", vpip_cur_task,
vpip_cur_task->defn->info.tfname);
}
return vpip_cur_task;
default:
fprintf(stderr, "VPI error: vpi_handle(type=%d, ref=0).\n",
(int)type);
res = 0;
break;
2003-03-14 06:02:34 +01:00
}
} else {
if (type == vpiSysTfCall) {
fprintf(stderr, "VPI error: vpi_handle(vpiSysTfCall, "
"ref!=0).\n");
return 0;
}
res = ref->vpi_handle(type);
2003-06-22 06:19:26 +02:00
}
2002-07-19 03:12:50 +02:00
if (vpi_trace) {
fprintf(vpi_trace, "vpi_handle(vpiScope, ref=%p) "
"-> %p\n", vpip_cur_task, ref);
}
return res;
}
static vpiHandle vpip_make_udp_iterator()
{
// HERE: Add support for iterating over UDP definitions.
// See 26.6.16 (page 400 in 1364-2005).
return 0;
}
/*
* This function asks the object to return an iterator for
* the specified reference. It is up to the iterate_ method to
* allocate a properly formed iterator.
*/
2002-01-06 01:48:39 +01:00
static vpiHandle vpi_iterate_global(int type)
{
switch (type) {
case vpiInstance:
// fallthrough
2002-01-06 01:48:39 +01:00
case vpiModule:
// fallthrough
case vpiProgram:
// fallthrough
case vpiInterface:
// fallthrough
case vpiPackage:
return vpip_make_root_iterator(type);
2002-01-06 01:48:39 +01:00
case vpiUdpDefn:
return vpip_make_udp_iterator();
case vpiUserSystf:
return vpip_make_systf_iterator();
2002-01-06 01:48:39 +01:00
}
return 0;
}
2004-02-18 18:52:00 +01:00
vpiHandle vpi_iterate(PLI_INT32 type, vpiHandle ref)
{
vpiHandle rtn = 0;
assert(vpi_mode_flag != VPI_MODE_NONE);
if (vpi_mode_flag == VPI_MODE_REGISTER) {
fprintf(stderr, "vpi error: vpi_iterate called during "
"vpi_register_systf. You can't do that!\n");
return 0;
}
2002-01-06 01:48:39 +01:00
if (ref == 0)
rtn = vpi_iterate_global(type);
else
rtn = ref->vpi_iterate(type);
2003-03-14 06:02:34 +01:00
if (vpi_trace) {
fprintf(vpi_trace, "vpi_iterate(%d, %p) ->%s\n",
(int)type, ref, rtn ? "" : " (null)");
2003-03-14 06:02:34 +01:00
}
return rtn;
}
2004-02-18 18:52:00 +01:00
vpiHandle vpi_handle_by_index(vpiHandle ref, PLI_INT32 idx)
{
2002-06-02 21:05:50 +02:00
assert(ref);
return ref->vpi_index(idx);
}
static vpiHandle find_name(const char *name, vpiHandle handle)
{
vpiHandle rtn = 0;
__vpiScope*ref = dynamic_cast<__vpiScope*>(handle);
/* check module names */
if (!strcmp(name, vpi_get_str(vpiName, handle)))
rtn = handle;
/* brute force search for the name in all objects in this scope */
2015-12-24 02:38:13 +01:00
for (unsigned i = 0 ; i < ref->intern.size() ; i += 1) {
/* The standard says that since a port does not have a full
* name it cannot be found by name. Because of this we need
* to skip ports here so the correct handle can be located. */
if (vpi_get(vpiType, ref->intern[i]) == vpiPort) continue;
2025-10-13 22:14:57 +02:00
const char *nm = vpi_get_str(vpiName, ref->intern[i]);
if (nm && !strcmp(name, nm)) {
rtn = ref->intern[i];
break;
} else if (vpi_get(vpiType, ref->intern[i]) == vpiMemory ||
vpi_get(vpiType, ref->intern[i]) == vpiNetArray) {
/* We need to iterate on the words */
vpiHandle word_i, word_h;
word_i = vpi_iterate(vpiMemoryWord, ref->intern[i]);
while (word_i && (word_h = vpi_scan(word_i))) {
nm = vpi_get_str(vpiName, word_h);
if (nm && !strcmp(name, nm)) {
rtn = word_h;
vpi_free_object(word_i);
break;
}
}
}
/* found it yet? */
if (rtn) break;
}
return rtn;
}
// Find the end of the escaped identifier or simple identifier
static char * find_rest(char *name)
{
char *rest;
if (*name == '\\') {
rest = strchr(name, ' ');
if (rest) {
*rest++ = 0; // The space is not part of the string
// There should be a '.' after the escaped ID if there is
// anything more. If it is missing add it to avoid a crash
if ((*rest != '.') && (*rest != 0)) {
*--rest = '.';
fprintf(stderr, "ERROR: Malformed scope string: \"%s\"", name);
}
if (*rest == 0) {
rest = 0;
}
}
} else {
rest = strchr(name, '.');
}
return rest;
}
static vpiHandle find_scope(const char *name, vpiHandle handle, int depth)
{
vpiHandle iter = handle==0
? vpi_iterate(vpiModule, NULL)
: vpi_iterate(vpiInternalScope, handle);
vector<char> name_buf (strlen(name)+1);
strcpy(&name_buf[0], name);
char*nm_first = &name_buf[0];
char*nm_rest = find_rest(nm_first);
if (*nm_first == '\\') ++nm_first;
if (nm_rest) {
*nm_rest++ = 0;
}
vpiHandle rtn = 0;
vpiHandle hand;
while (iter && (hand = vpi_scan(iter))) {
2025-10-13 22:14:57 +02:00
const char *nm = vpi_get_str(vpiName, hand);
if (strcmp(nm_first,nm)==0) {
if (nm_rest)
rtn=find_scope(nm_rest, hand, depth+1);
else
rtn = hand;
}
/* found it yet ? */
if (rtn) {
vpi_free_object(iter);
break;
}
}
return rtn;
}
// Find the end of the first escaped identifier or simple identifier
static char * find_next(char *name)
{
char *next;
if (*name == '\\') {
next = strchr(name, ' ');
if (next && *++next == 0) next = 0;
} else {
next = strchr(name, '.');
}
return next;
}
vpiHandle vpi_handle_by_name(const char *name, vpiHandle scope)
{
vpiHandle hand;
if (vpi_trace) {
fprintf(vpi_trace, "vpi_handle_by_name(%s, %p) -->\n",
name, scope);
}
// Chop the name into path and base. For example, if the name
// is "a.b.c", then nm_path becomes "a.b" and nm_base becomes
// "c". If the name is "c" then nm_path is nil and nm_base is "c".
vector<char> name_buf (strlen(name)+1);
strcpy(&name_buf[0], name);
char*nm_path = &name_buf[0];
char*nm_base;
// Check to see if we have an escaped identifier and if so search
// the long way because a '.' could be in the escaped name.
if (strchr(nm_path, '\\')) {
char *next;
nm_base = nm_path;
while ((next = find_next(nm_base))) {
nm_base = ++next;
}
if (nm_path == nm_base) {
nm_path = 0;
} else {
*(nm_base-1) = 0;
}
// If there is no escaped identifier then just look for the last '.'
} else {
nm_base = strrchr(nm_path, '.');
if (nm_base) {
*nm_base++ = 0;
} else {
nm_base = nm_path;
nm_path = 0;
}
}
2003-02-10 00:33:26 +01:00
/* If scope provided, look in corresponding module; otherwise
* traverse the hierarchy specified in name to find the leaf module
* and try finding it there.
*/
if (scope) {
/* Some implementations support either a module or a scope. */
switch (vpi_get(vpiType, scope)) {
case vpiScope:
hand = vpi_handle(vpiModule, scope);
break;
case vpiModule:
hand = scope;
break;
default:
if (vpi_trace) {
fprintf(vpi_trace, "vpi_handle_by_name: "
"Scope is not a vpiScope or vpiModule\n");
}
// Use vpi_chk_error() here when it is implemented.
return 0;
}
} else if (nm_path) {
// The name has a path, and no other scope handle was
// passed in. That suggests we are looking for "a.b.c"
// in the root scope. So convert "a.b" to a scope and
// start there to look for "c".
hand = find_scope(nm_path, NULL, 0);
nm_path = 0;
} else {
// Special case: scope==<nil>, meaning we are looking in
// the root, and there is no path to the name, i.e. the
// string is "c" instead of "top.c". Try to find "c" as
// a scope and return that.
hand = find_scope(nm_base, NULL, 0);
}
if (hand == 0) {
if (vpi_trace) {
fprintf(vpi_trace, "vpi_handle_by_name: "
"Scope does not exist. Giving up.\n");
}
return 0;
}
// If there is a path part, then use it to find the
// scope. For example, if the full name is a.b.c, then
// the nm_path string is a.b and we search for that
// scope. If we find it, then set hand to that scope.
if (nm_path) {
vpiHandle tmp = find_scope(nm_path, hand, 0);
while (tmp == 0 && hand != 0) {
hand = vpi_handle(vpiScope, hand);
tmp = find_scope(nm_path, hand, 0);
}
hand = tmp;
}
// find_name() expects escaped identifiers to be stripped
if (*nm_base == '\\') {
// Skip the \ at the beginning
++nm_base;
// Drop the space at the end if it exists
char *next;
if ((next = strchr(nm_base, ' '))) {
*next = 0;
}
}
// Now we have the correct scope, look for the item.
vpiHandle out = find_name(nm_base, hand);
if (vpi_trace) {
fprintf(vpi_trace, "vpi_handle_by_name: DONE\n");
}
return out;
}
// Check if net2 is connected to current_net through a net of vvp_fun_concat8s
bool check_connected_to_concat8(vvp_net_t* current_net, vvp_net_t* net2)
{
if (!dynamic_cast<vvp_fun_concat8*>(current_net->fun)) return false;
vvp_net_ptr_t cur = current_net->out_;
// For everything connected
while (cur.ptr()) {
// Check if it's a concat8
if (dynamic_cast<vvp_fun_concat8*>(cur.ptr()->fun)) {
// Pass on the return value if found
if (check_connected_to_concat8(cur.ptr(), net2)) {
return true;
}
}
// net2 is connected
if (cur.ptr() == net2) {
return true;
}
// Next net in linked list
cur = cur.ptr()->port[cur.port()];
}
// net2 is not connected to this concat8
return false;
}
// Used to get intermodpath for two ports
vpiHandle vpi_handle_multi(PLI_INT32 type,
vpiHandle ref1,
vpiHandle ref2)
{
if (vpi_trace) {
2023-08-17 16:09:20 +02:00
fprintf(vpi_trace, "vpi_handle_multi(%d, %p, %p) -->\n",
type, ref1, ref2);
}
if (type != vpiInterModPath) {
2023-08-17 16:09:20 +02:00
fprintf(stderr, "sorry: vpi_handle_multi currently supports"
"only vpiInterModPath\n");
return nullptr;
}
2023-09-04 11:31:35 +02:00
// Indicates whether port1 refers to a single bit
bool port1_has_index = false;
int port1_bit_index = 0;
vpiPortBitInfo* port1_bit = dynamic_cast<vpiPortBitInfo*>(ref1);
if (port1_bit) {
// Get the bit index
2023-09-04 11:31:35 +02:00
port1_has_index = true;
port1_bit_index = vpi_get(vpiBit, port1_bit);
// Update the ref1 to point to the base port
ref1 = vpi_handle(vpiParent, port1_bit);
}
2023-09-04 11:31:35 +02:00
// Indicates whether port2 refers to a single bit
bool port2_has_index = false;
int port2_bit_index = 0;
vpiPortBitInfo* port2_bit = dynamic_cast<vpiPortBitInfo*>(ref2);
if (port2_bit) {
// Get the bit index
2023-09-04 11:31:35 +02:00
port2_has_index = true;
port2_bit_index = vpi_get(vpiBit, port2_bit);
// Update the ref1 to point to the base port
ref2 = vpi_handle(vpiParent, port2_bit);
}
vpiPortInfo* port1 = dynamic_cast<vpiPortInfo*>(ref1);
if (!port1) {
2023-08-17 16:09:20 +02:00
fprintf(stderr, "sorry: second argument of vpi_handle_multi"
"must be a vpiPort\n");
return nullptr;
}
vpiPortInfo* port2 = dynamic_cast<vpiPortInfo*>(ref2);
if (!port2) {
2023-08-17 16:09:20 +02:00
fprintf(stderr, "sorry: third argument of vpi_handle_multi"
"must be a vpiPort\n");
return nullptr;
}
2023-09-04 14:07:48 +02:00
// Get the names of both ports
std::string port1_name(vpi_get_str(vpiName, ref1));
std::string port2_name(vpi_get_str(vpiName, ref2));
2023-09-04 09:12:38 +02:00
2023-08-17 16:09:20 +02:00
// If both ports are vpiOutput, we have to reassign the __vpiSignal from port1
// to port2 because otherwise the non-delayed version of the signal is dumped
// even tho the intermodpath is correctly inserted
__vpiSignal* output_signal = nullptr;
2023-08-17 16:09:20 +02:00
if (port1->get_direction() == vpiOutput && port2->get_direction() == vpiOutput) {
vpiHandle scope_port2 = vpi_handle(vpiScope, ref2);
assert(scope_port2);
// Iterate over nets in the scope of port2
2023-08-17 16:09:20 +02:00
vpiHandle net_i = vpi_iterate(vpiNet, scope_port2) ;
vpiHandle net;
2023-08-17 16:09:20 +02:00
while ((net = vpi_scan(net_i)) != NULL) {
std::string net_name(vpi_get_str(vpiName, net));
2023-08-17 16:09:20 +02:00
// Compare whether the net matches with the port name
if (net_name == port2_name) {
output_signal = dynamic_cast<__vpiSignal*>(net);
}
}
2023-07-25 13:14:49 +02:00
}
vvp_net_t* net1 = port1->get_port();
vvp_net_t* net2 = port2->get_port();
2023-08-17 16:09:20 +02:00
if (net1 == nullptr || net2 == nullptr) {
fprintf(stderr, "Error: Could not find net. "
"Did you run iverilog with '-ginterconnect'?\n");
return nullptr;
}
2023-08-17 16:09:20 +02:00
if (net1 == net2) {
fprintf(stderr, "Error: Net for both ports is the same. "
"Did you pass the same port twice?\n");
return nullptr;
}
2023-08-17 16:09:20 +02:00
if (!dynamic_cast<vvp_fun_buft*>(net1->fun)) {
fprintf(stderr, "Error: functor of net1 must be"
"vvp_fun_buft\n");
return nullptr;
}
2023-08-17 16:09:20 +02:00
if (!dynamic_cast<vvp_fun_buft*>(net2->fun)) {
fprintf(stderr, "Error: functor of net2 must be"
"vvp_fun_buft\n");
return nullptr;
}
// If port1 is actually a port bit, we have to get to the correct vvp_fun_part
// after which we insert the intermodpath delay
2023-09-04 11:31:35 +02:00
if (port1_has_index) {
vvp_net_ptr_t* net1_ptr = &net1->out_;
// Search for part selects connected to port1
vvp_net_t* current_net = net1_ptr->ptr();
while (current_net) {
if (!current_net) break; // End of list
2025-10-13 22:14:57 +02:00
const vvp_fun_part* part = dynamic_cast<vvp_fun_part*>(current_net->fun);
// Its a part select!
if (part) {
// Is it the correct part select?
if (part->get_base() == (unsigned)port1_bit_index) {
assert(part->get_wid() == 1);
net1 = current_net; // Replace net1 as this is our new start point
break;
}
}
current_net = current_net->port[0].ptr(); // BUFT has only one input, index 0
}
}
2023-08-17 16:09:20 +02:00
// Iterate over all nodes connected to port1
vvp_net_ptr_t cur = net1->out_;
vvp_net_ptr_t prev = vvp_net_ptr_t(nullptr, 0);
2023-08-17 16:09:20 +02:00
while (cur.ptr()) {
// Either port2 is directly connected to port1
// Or in the second case port2 is indirectly connected
// to port1 through a net of concat8s
2023-09-04 11:31:35 +02:00
if ( (!port2_has_index && cur.ptr() == net2) ||
( port2_has_index && check_connected_to_concat8(cur.ptr(), net2))) {
2023-08-17 16:09:20 +02:00
vvp_net_t*new_net = new vvp_net_t;
// Create new node with intermodpath and connect port2 to it
int width = 1; // TODO
vvp_fun_intermodpath*obj = new vvp_fun_intermodpath(new_net, width);
new_net->fun = obj;
new_net->out_ = cur;
// Port2 is in the middle of the list
// Insert intermodpath before port2 and keep everything else intact
if (prev.ptr()) {
prev.ptr()->port[prev.port()] = vvp_net_ptr_t(new_net, 0); // Point to port 0 of vvp_fun_intermodpath
new_net->port[0] = cur.ptr()->port[cur.port()]; // Connect the next net in list
cur.ptr()->port[cur.port()] = vvp_net_ptr_t(nullptr, 0); // Only port2 is connected to intermodpath
// Port2 is first in list
// Insert intermodpath before port2 and keep everything else intact
} else {
net1->out_ = vvp_net_ptr_t(new_net, 0); // Point to port 0 of vvp_fun_intermodpath
new_net->port[0] = cur.ptr()->port[cur.port()]; // Connect the next net in list
cur.ptr()->port[cur.port()] = vvp_net_ptr_t(nullptr, 0); // Only port2 is connected to intermodpath
}
// If both ports are vpiOutput and port2 is not a vector,
// we have to reassign the __vpiSignal so that the delayed
// values get dumped
2023-09-04 11:31:35 +02:00
if (output_signal && !port2_has_index) {
2023-08-17 16:09:20 +02:00
net2->fil = net1->fil;
net1->fil = nullptr;
output_signal->node = net2;
}
2023-08-17 16:09:20 +02:00
// Create the VPI intermodpath object
__vpiInterModPath* intermodpath = vpip_make_intermodpath(new_net, port1, port2);
intermodpath->intermodpath = obj;
2023-08-17 16:09:20 +02:00
// Finally done, return the intermodpath object
return intermodpath;
}
2023-08-17 16:09:20 +02:00
prev = cur;
cur = cur.ptr()->port[cur.port()]; // Next net in linked list
}
2023-07-25 13:14:49 +02:00
2023-09-04 11:31:35 +02:00
fprintf(stderr, "VPI error: Could not insert intermodpath!\n");
fprintf(stderr, "\tport1 = %s, port1_has_index = %d, port1_bit_index = %d\n", port1_name.c_str(), port1_has_index, port1_bit_index);
fprintf(stderr, "\tport2 = %s, port2_has_index = %d, port2_bit_index = %d\n", port2_name.c_str(), port2_has_index, port2_bit_index);
return nullptr;
}
/*
We increment the two vpi methods to enable the
read/write of SDF delay values from/into
the modpath vpiHandle
basically, they will redirect the generic vpi_interface
vpi_get_delay ( .. )
vpi_put_delay ( .. )
to the
modpath_get_delay ( .. ) ;
modpath_put_delay ( .. ) ;
*/
void vpi_get_delays(vpiHandle expr, p_vpi_delay delays)
{
assert(expr);
assert(delays);
expr->vpi_get_delays(delays);
if (vpi_trace) {
fprintf(vpi_trace,
"vpi_get_delays(%p, %p) -->\n", expr, delays);
}
}
void vpi_put_delays(vpiHandle expr, p_vpi_delay delays)
{
assert(expr );
assert(delays );
expr->vpi_put_delays(delays);
if (vpi_trace) {
fprintf(vpi_trace,
"vpi_put_delays(%p, %p) -->\n", expr, delays);
}
}
extern "C" PLI_INT32 vpi_vprintf(const char*fmt, va_list ap)
{
return vpi_mcd_vprintf(1, fmt, ap);
}
extern "C" PLI_INT32 vpi_printf(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
int r = vpi_mcd_vprintf(1, fmt, ap);
va_end(ap);
return r;
}
extern "C" PLI_INT32 vpi_flush(void)
{
return vpi_mcd_flush(1);
}
extern "C" PLI_INT32 vpi_sim_vcontrol(int operation, va_list ap)
{
long diag_msg;
switch (operation) {
case vpiFinish:
case __ivl_legacy_vpiFinish:
diag_msg = va_arg(ap, PLI_INT32);
schedule_finish(diag_msg);
break;
2003-02-21 04:40:35 +01:00
case vpiStop:
case __ivl_legacy_vpiStop:
diag_msg = va_arg(ap, PLI_INT32);
schedule_stop(diag_msg);
2003-02-21 04:40:35 +01:00
break;
default:
fprintf(stderr, "Unsupported VPI control operation %d.\n", operation);
return 0;
}
return 1;
}
extern "C" PLI_INT32 vpi_sim_control(PLI_INT32 operation, ...)
{
va_list ap;
va_start(ap, operation);
int r = vpi_sim_vcontrol(operation, ap);
va_end(ap);
return r;
}
extern "C" PLI_INT32 vpi_control(PLI_INT32 operation, ...)
2003-01-10 20:02:21 +01:00
{
va_list ap;
va_start(ap, operation);
int r = vpi_sim_vcontrol(operation, ap);
2003-01-10 20:02:21 +01:00
va_end(ap);
return r;
2003-01-10 20:02:21 +01:00
}
/*
* This routine calculated the return value for $clog2.
* It is easier to do it here vs trying to to use the VPI interface.
*/
extern "C" s_vpi_vecval vpip_calc_clog2(vpiHandle arg)
{
s_vpi_vecval rtn;
s_vpi_value val;
vvp_vector4_t vec4;
bool is_neg = false; // At this point only a real can be negative.
/* Get the value as a vvp_vector4_t. */
val.format = vpiObjTypeVal;
vpi_get_value(arg, &val);
if (val.format == vpiRealVal) {
vpi_get_value(arg, &val);
/* All double values can be represented in 1024 bits. */
vec4 = vvp_vector4_t(1024, val.value.real);
if (val.value.real < 0) is_neg = true;
} else {
val.format = vpiVectorVal;
vpi_get_value(arg, &val);
unsigned wid = vpi_get(vpiSize, arg);
vec4 = vvp_vector4_t(wid, BIT4_0);
for (unsigned idx=0; idx < wid; idx += 1) {
PLI_INT32 aval = val.value.vector[idx/32].aval;
PLI_INT32 bval = val.value.vector[idx/32].bval;
aval >>= idx % 32;
bval >>= idx % 32;
int bitmask = (aval&1) | ((bval<<1)&2);
vvp_bit4_t bit = scalar_to_bit4(bitmask);
vec4.set_bit(idx, bit);
}
}
if (vec4.has_xz()) {
rtn.aval = rtn.bval = 0xFFFFFFFFU; /* Set to 'bx. */
return rtn;
}
vvp_vector2_t vec2(vec4);
if (is_neg) vec2.trim_neg(); /* This is a special trim! */
else vec2.trim(); /* This makes less work shifting. */
/* Calculate the clog2 result. */
PLI_INT32 res = 0;
if (!vec2.is_zero()) {
vec2 -= vvp_vector2_t(1, vec2.size());
while(!vec2.is_zero()) {
res += 1;
vec2 >>= 1;
}
}
rtn.aval = res;
rtn.bval = 0;
return rtn;
}
/*
* This routine provides the information needed to implement $countdrivers.
* It is done here for performance reasons - interrogating the drivers
* individually via the VPI interface would be much slower.
*/
extern "C" void vpip_count_drivers(vpiHandle ref, unsigned idx,
unsigned counts[4])
{
struct __vpiSignal*rfp = dynamic_cast<__vpiSignal*>(ref);
assert(rfp);
rfp->node->count_drivers(idx, counts);
}
#if defined(__MINGW32__) || defined (__CYGWIN__)
vpip_routines_s vpi_routines = {
.register_cb = vpi_register_cb,
.remove_cb = vpi_remove_cb,
.register_systf = vpi_register_systf,
.get_systf_info = vpi_get_systf_info,
.handle_by_name = vpi_handle_by_name,
.handle_by_index = vpi_handle_by_index,
.handle_multi = vpi_handle_multi,
.handle = vpi_handle,
.iterate = vpi_iterate,
.scan = vpi_scan,
.get = vpi_get,
.get_str = vpi_get_str,
.get_delays = vpi_get_delays,
.put_delays = vpi_put_delays,
.get_value = vpi_get_value,
.put_value = vpi_put_value,
.get_time = vpi_get_time,
.get_userdata = vpi_get_userdata,
.put_userdata = vpi_put_userdata,
.mcd_open = vpi_mcd_open,
.mcd_close = vpi_mcd_close,
.mcd_flush = vpi_mcd_flush,
.mcd_name = vpi_mcd_name,
.mcd_vprintf = vpi_mcd_vprintf,
.flush = vpi_flush,
.vprintf = vpi_vprintf,
.chk_error = vpi_chk_error,
.compare_objects = vpi_compare_objects,
.free_object = vpi_free_object,
.release_handle = vpi_release_handle,
.get_vlog_info = vpi_get_vlog_info,
.vcontrol = vpi_sim_vcontrol,
.fopen = vpi_fopen,
.get_file = vpi_get_file,
.calc_clog2 = vpip_calc_clog2,
.count_drivers = vpip_count_drivers,
.format_strength = vpip_format_strength,
.make_systf_system_defined = vpip_make_systf_system_defined,
.mcd_rawwrite = vpip_mcd_rawwrite,
.set_return_value = vpip_set_return_value,
};
#endif