UberDDR3/rtl/spd/i2c_master.sv

694 lines
27 KiB
Systemverilog

`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company: www.circuitden.com
// Engineer: Artin Isagholian
// artinisagholian@gmail.com
//
// Create Date: 01/20/2021 05:47:22 PM
// Design Name:
// Module Name: i2c_master
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module i2c_master#(
parameter DATA_WIDTH = 8,
parameter REGISTER_WIDTH = 8,
parameter ADDRESS_WIDTH = 7
)(
input wire clock,
input wire reset_n,
input wire enable,
input wire read_write,
input wire [DATA_WIDTH-1:0] mosi_data,
input wire [REGISTER_WIDTH-1:0] register_address,
input wire [ADDRESS_WIDTH-1:0] device_address,
input wire [15:0] divider,
output reg [DATA_WIDTH-1:0] miso_data,
output reg busy,
inout external_serial_data,
inout external_serial_clock,
// debug if slave NACKs
output reg slave_nack // high at same time as busy deasserts if slave nacks at previous transaction. otherwise low
);
/*INSTANTATION TEMPLATE
i2c_master #(.DATA_WIDTH(8),.REGISTER_WIDTH(8),.ADDRESS_WIDTH(7))
i2c_master_inst(
.clock (),
.reset_n (),
.enable (),
.read_write (),
.mosi_data (),
.register_address (),
.device_address (),
.divider (),
.miso_data (),
.busy (),
.external_serial_data (),
.external_serial_clock (),
.slave_nack ()
);
*/
typedef enum
{
S_IDLE = 0,
S_START = 1,
S_WRITE_ADDR_W = 2,
S_CHECK_ACK = 3,
S_WRITE_REG_ADDR = 4,
S_RESTART = 5,
S_WRITE_ADDR_R = 6,
S_READ_REG = 7,
S_SEND_NACK = 8,
S_SEND_STOP = 9,
S_WRITE_REG_DATA = 10,
S_WRITE_REG_ADDR_MSB = 11,
S_WRITE_REG_DATA_MSB = 12,
S_READ_REG_MSB = 13,
S_SEND_ACK = 14
} state_type;
state_type state;
state_type _state;
state_type post_state;
state_type _post_state;
reg serial_clock;
logic _serial_clock;
reg [ADDRESS_WIDTH:0] saved_device_address;
logic [ADDRESS_WIDTH:0] _saved_device_address;
reg [REGISTER_WIDTH-1:0] saved_register_address;
logic [REGISTER_WIDTH-1:0] _saved_register_address;
reg [DATA_WIDTH-1:0] saved_mosi_data;
logic [DATA_WIDTH-1:0] _saved_mosi_data;
reg [1:0] process_counter;
logic [1:0] _process_counter;
reg [7:0] bit_counter;
logic [7:0] _bit_counter;
reg serial_data;
logic _serial_data;
reg post_serial_data;
logic _post_serial_data;
reg last_acknowledge;
logic _last_acknowledge;
logic _saved_read_write;
reg saved_read_write;
reg [15:0] divider_counter;
logic [15:0] _divider_counter;
reg divider_tick;
logic [DATA_WIDTH-1:0] _miso_data;
logic _busy;
logic serial_data_output_enable;
logic serial_clock_output_enable;
assign external_serial_clock = (serial_clock_output_enable) ? serial_clock : 1'bz;
assign external_serial_data = (serial_data_output_enable) ? serial_data : 1'bz;
// determine if slave NACK
reg last_acknowledge_q;
always_ff @(posedge clock) begin
if (!reset_n) begin
last_acknowledge_q <= 1'b0;
slave_nack <= 1'b0;
end
else begin
last_acknowledge_q <= last_acknowledge? 1'b1 : last_acknowledge_q; // if last_ack becomes high, store that high
if(!_busy && busy) begin // if busy is about to deassert next clk
last_acknowledge_q <= 1'b0; // reset to zero
slave_nack <= !last_acknowledge_q;// if last_acknowledge_q never becomes 1 then the slave NACKs
end
else if(_busy) begin
slave_nack <= 1'b0;
end
end
end
always_comb begin
_state = state;
_post_state = post_state;
_process_counter = process_counter;
_bit_counter = bit_counter;
_last_acknowledge = last_acknowledge;
_miso_data = miso_data;
_saved_read_write = saved_read_write;
_busy = busy;
_divider_counter = divider_counter;
_saved_register_address = saved_register_address;
_saved_device_address = saved_device_address;
_saved_mosi_data = saved_mosi_data;
_serial_data = serial_data;
_serial_clock = serial_clock;
_post_serial_data = post_serial_data;
if (divider_counter == divider) begin
_divider_counter = 0;
divider_tick = 1;
end
else begin
_divider_counter = divider_counter + 1;
divider_tick = 0;
end
if (state!=S_IDLE && state!=S_CHECK_ACK && state!=S_READ_REG && state!=S_READ_REG_MSB) begin
serial_data_output_enable = 1;
end
else begin
serial_data_output_enable = 0;
end
if (state!=S_IDLE && process_counter!=1 && process_counter!=2) begin
serial_clock_output_enable = 1;
end
else begin
serial_clock_output_enable = 0;
end
case (state)
S_IDLE: begin
_process_counter = 0;
_bit_counter = 0;
_last_acknowledge = 0;
_busy = 0;
_saved_read_write = read_write;
_saved_register_address = register_address;
_saved_device_address = {device_address,1'b0};
_saved_mosi_data = mosi_data;
_serial_data = 1;
_serial_clock = 1;
if (enable) begin
_state = S_START;
_post_state = S_WRITE_ADDR_W;
_busy = 1;
end
end
S_START: begin
if (divider_tick) begin
case (process_counter)
0: begin
_process_counter = 1;
end
1: begin
_serial_data = 0;
_process_counter = 2;
end
2: begin
_bit_counter = 8;
_process_counter = 3;
end
3: begin
_serial_clock = 0;
_process_counter = 0;
_state = post_state;
_serial_data = saved_device_address[ADDRESS_WIDTH];
end
endcase
end
end
S_WRITE_ADDR_W: begin
if (divider_tick) begin
case (process_counter)
0: begin
_serial_clock = 1;
_process_counter = 1;
end
1: begin
//check for clock stretching
if (external_serial_clock == 1) begin
_process_counter = 2;
end
end
2: begin
_serial_clock = 0;
_bit_counter = bit_counter - 1;
_process_counter = 3;
end
3: begin
if (bit_counter == 0) begin
_post_serial_data = saved_register_address[REGISTER_WIDTH-1];
if (REGISTER_WIDTH == 16) begin
_post_state = S_WRITE_REG_ADDR_MSB;
end
else begin
_post_state = S_WRITE_REG_ADDR;
end
_state = S_CHECK_ACK;
_bit_counter = 8;
end
else begin
_serial_data = saved_device_address[bit_counter-1];
end
_process_counter = 0;
end
endcase
end
end
S_CHECK_ACK: begin
if (divider_tick) begin
case (process_counter)
0: begin
_serial_clock = 1;
_process_counter = 1;
end
1: begin
//check for clock stretching
if (external_serial_clock == 1) begin
_last_acknowledge = 0;
_process_counter = 2;
end
end
2: begin
_serial_clock = 0;
if (external_serial_data == 0) begin
_last_acknowledge = 1;
end
_process_counter = 3;
end
3: begin
if (last_acknowledge == 1) begin
_last_acknowledge = 0;
_serial_data = post_serial_data;
_state = post_state;
end
else begin
_state = S_SEND_STOP;
end
_process_counter = 0;
end
endcase
end
end
S_WRITE_REG_ADDR_MSB: begin
if (divider_tick) begin
case (process_counter)
0: begin
_serial_clock = 1;
_process_counter = 1;
end
1: begin
//check for clock stretching
if (external_serial_clock == 1) begin
_last_acknowledge = 0;
_process_counter = 2;
end
end
2: begin
_serial_clock = 0;
_bit_counter = bit_counter - 1;
_process_counter = 3;
end
3: begin
if (bit_counter == 0) begin
_post_state = S_WRITE_REG_ADDR;
_post_serial_data = saved_register_address[7];
_bit_counter = 8;
_serial_data = 0;
_state = S_CHECK_ACK;
end
else begin
_serial_data = saved_register_address[bit_counter+7];
end
_process_counter = 0;
end
endcase
end
end
S_WRITE_REG_ADDR: begin
if (divider_tick) begin
case (process_counter)
0: begin
_serial_clock = 1;
_process_counter = 1;
end
1: begin
//check for clock stretching
if (external_serial_clock == 1) begin
_last_acknowledge = 0;
_process_counter = 2;
end
end
2: begin
_serial_clock = 0;
_bit_counter = bit_counter - 1;
_process_counter = 3;
end
3: begin
if (bit_counter == 0) begin
if (read_write == 0) begin
if (DATA_WIDTH == 16) begin
_post_state = S_WRITE_REG_DATA_MSB;
_post_serial_data = saved_mosi_data[DATA_WIDTH == 16? 15 : 7];
end
else begin
_post_state = S_WRITE_REG_DATA;
_post_serial_data = saved_mosi_data[7];
end
end
else begin
_post_state = S_RESTART;
_post_serial_data = 1;
end
_bit_counter = 8;
_serial_data = 0;
_state = S_CHECK_ACK;
end
else begin
_serial_data = saved_register_address[bit_counter-1];
end
_process_counter = 0;
end
endcase
end
end
S_WRITE_REG_DATA_MSB: begin
if (divider_tick) begin
case (process_counter)
0: begin
_serial_clock = 1;
_process_counter = 1;
end
1: begin
//check for clock stretching
if (external_serial_clock == 1) begin
_last_acknowledge = 0;
_process_counter = 2;
end
end
2: begin
_serial_clock = 0;
_bit_counter = bit_counter - 1;
_process_counter = 3;
end
3: begin
if (bit_counter == 0) begin
_state = S_CHECK_ACK;
_post_state = S_WRITE_REG_DATA;
_post_serial_data = saved_mosi_data[7];
_bit_counter = 8;
_serial_data = 0;
end
else begin
_serial_data = saved_mosi_data[bit_counter+7];
end
_process_counter = 0;
end
endcase
end
end
S_WRITE_REG_DATA: begin
if (divider_tick) begin
case (process_counter)
0: begin
_serial_clock = 1;
_process_counter = 1;
end
1: begin
//check for clock stretching
if (external_serial_clock == 1) begin
_last_acknowledge = 0;
_process_counter = 2;
end
end
2: begin
_serial_clock = 0;
_bit_counter = bit_counter - 1;
_process_counter = 3;
end
3: begin
if (bit_counter == 0) begin
_state = S_CHECK_ACK;
_post_state = S_SEND_STOP;
_post_serial_data = 0;
_bit_counter = 8;
_serial_data = 0;
end
else begin
_serial_data = saved_mosi_data[bit_counter-1];
end
_process_counter = 0;
end
endcase
end
end
S_RESTART: begin
if (divider_tick) begin
case (process_counter)
0: begin
_process_counter = 1;
end
1: begin
_process_counter = 2;
_serial_clock = 1;
end
2: begin
_process_counter = 3;
end
3: begin
_state = S_START;
_post_state = S_WRITE_ADDR_R;
_saved_device_address[0] = 1;
_process_counter = 0;
end
endcase
end
end
S_WRITE_ADDR_R: begin
if (divider_tick) begin
case (process_counter)
0: begin
_serial_clock = 1;
_process_counter = 1;
end
1: begin
//check for clock stretching
if (external_serial_clock == 1) begin
_last_acknowledge = 0;
_process_counter = 2;
end
end
2: begin
_serial_clock = 0;
_bit_counter = bit_counter - 1;
_process_counter = 3;
end
3: begin
if (bit_counter == 0) begin
if (DATA_WIDTH == 16) begin
_post_state = S_READ_REG_MSB;
_post_serial_data = 0;
end
else begin
_post_state = S_READ_REG;
_post_serial_data = 0;
end
_state = S_CHECK_ACK;
_bit_counter = 8;
end
else begin
_serial_data = saved_device_address[bit_counter-1];
end
_process_counter = 0;
end
endcase
end
end
S_READ_REG_MSB: begin
if (divider_tick) begin
case (process_counter)
0: begin
_serial_clock = 1;
_process_counter = 1;
end
1: begin
//check for clock stretching
if (external_serial_clock == 1) begin
_last_acknowledge = 0;
_process_counter = 2;
end
end
2: begin
_serial_clock = 0;
//sample data on this rising edge of scl
_miso_data[bit_counter+7] = external_serial_data;
_bit_counter = bit_counter - 1;
_process_counter = 3;
end
3: begin
if (bit_counter == 0) begin
_post_state = S_READ_REG;
_state = S_SEND_ACK;
_bit_counter = 8;
_serial_data = 0;
end
_process_counter = 0;
end
endcase
end
end
S_READ_REG: begin
if (divider_tick) begin
case (process_counter)
0: begin
_serial_clock = 1;
_process_counter = 1;
end
1: begin
//check for clock stretching
if (external_serial_clock == 1) begin
_last_acknowledge = 0;
_process_counter = 2;
end
end
2: begin
_serial_clock = 0;
//sample data on this rising edge of scl
_miso_data[bit_counter-1] = external_serial_data;
_bit_counter = bit_counter - 1;
_process_counter = 3;
end
3: begin
if (bit_counter == 0) begin
_state = S_SEND_NACK;
_serial_data = 0;
end
_process_counter = 0;
end
endcase
end
end
S_SEND_NACK: begin
if (divider_tick) begin
case (process_counter)
0: begin
_serial_clock = 1;
_serial_data = 1;
_process_counter = 1;
end
1: begin
//check for clock stretching
if (external_serial_clock == 1) begin
_last_acknowledge = 0;
_process_counter = 2;
end
end
2: begin
_process_counter = 3;
_serial_clock = 0;
end
3: begin
_state = S_SEND_STOP;
_process_counter = 0;
_serial_data = 0;
end
endcase
end
end
S_SEND_ACK: begin
if (divider_tick) begin
case (process_counter)
0: begin
_serial_clock = 1;
_process_counter = 1;
_serial_data = 0;
end
1: begin
//check for clock stretching
if (external_serial_clock == 1) begin
_last_acknowledge = 0;
_process_counter = 2;
end
end
2: begin
_process_counter = 3;
_serial_clock = 0;
end
3: begin
_state = post_state;
_process_counter = 0;
end
endcase
end
end
S_SEND_STOP: begin
if (divider_tick) begin
case (process_counter)
0: begin
_serial_clock = 1;
_process_counter = 1;
end
1: begin
//check for clock stretching
if (external_serial_clock == 1) begin
_last_acknowledge = 0;
_process_counter = 2;
end
end
2: begin
_process_counter = 3;
_serial_data = 1;
end
3: begin
_state = S_IDLE;
end
endcase
end
end
endcase
end
always_ff @(posedge clock) begin
if (!reset_n) begin
state <= S_IDLE;
post_state <= S_IDLE;
process_counter <= 0;
bit_counter <= 0;
last_acknowledge <= 0;
miso_data <= 0;
saved_read_write <= 0;
divider_counter <= 0;
saved_device_address <= 0;
saved_register_address <= 0;
saved_mosi_data <= 0;
serial_clock <= 0;
serial_data <= 0;
saved_mosi_data <= 0;
post_serial_data <= 0;
busy <= 0;
end
else begin
state <= _state;
post_state <= _post_state;
process_counter <= _process_counter;
bit_counter <= _bit_counter;
last_acknowledge <= _last_acknowledge;
miso_data <= _miso_data;
saved_read_write <= _saved_read_write;
divider_counter <= _divider_counter;
saved_device_address <= _saved_device_address;
saved_register_address <= _saved_register_address;
saved_mosi_data <= _saved_mosi_data;
serial_clock <= _serial_clock;
serial_data <= _serial_data;
post_serial_data <= _post_serial_data;
busy <= _busy;
end
end
endmodule