OpenSTA/graph/Graph.i

443 lines
11 KiB
OpenEdge ABL

// OpenSTA, Static Timing Analyzer
// Copyright (c) 2025, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software.
//
// Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
//
// This notice may not be removed or altered from any source distribution.
%module graph
%{
#include "Graph.hh"
#include "FuncExpr.hh"
#include "TimingRole.hh"
#include "Liberty.hh"
#include "Network.hh"
#include "Clock.hh"
#include "Corner.hh"
#include "Search.hh"
#include "Sta.hh"
using namespace sta;
%}
////////////////////////////////////////////////////////////////
//
// Empty class definitions to make swig happy.
// Private constructor/destructor so swig doesn't emit them.
//
////////////////////////////////////////////////////////////////
class Vertex
{
private:
Vertex();
~Vertex();
};
class Edge
{
private:
Edge();
~Edge();
};
class VertexIterator
{
private:
VertexIterator();
~VertexIterator();
};
class VertexInEdgeIterator
{
private:
VertexInEdgeIterator();
~VertexInEdgeIterator();
};
class VertexOutEdgeIterator
{
private:
VertexOutEdgeIterator();
~VertexOutEdgeIterator();
};
%inline %{
VertexIterator *
vertex_iterator()
{
Graph *graph = Sta::sta()->ensureGraph();
return new VertexIterator(graph);
}
void
set_arc_delay(Edge *edge,
TimingArc *arc,
const Corner *corner,
const MinMaxAll *min_max,
float delay)
{
Sta::sta()->setArcDelay(edge, arc, corner, min_max, delay);
}
void
set_annotated_slew(Vertex *vertex,
const Corner *corner,
const MinMaxAll *min_max,
const RiseFallBoth *rf,
float slew)
{
Sta::sta()->setAnnotatedSlew(vertex, corner, min_max, rf, slew);
}
// Remove all delay and slew annotations.
void
remove_delay_slew_annotations()
{
Sta::sta()->removeDelaySlewAnnotations();
}
%} // inline
////////////////////////////////////////////////////////////////
//
// Object Methods
//
////////////////////////////////////////////////////////////////
%extend Vertex {
Pin *pin() { return self->pin(); }
bool is_bidirect_driver() { return self->isBidirectDriver(); }
int level() { return Sta::sta()->vertexLevel(self); }
int tag_group_index() { return self->tagGroupIndex(); }
Slew
slew(const RiseFall *rf,
const MinMax *min_max)
{
Sta *sta = Sta::sta();
return sta->vertexSlew(self, rf, min_max);
}
Slew
slew_corner(const RiseFall *rf,
const Corner *corner,
const MinMax *min_max)
{
Sta *sta = Sta::sta();
return sta->vertexSlew(self, rf, corner, min_max);
}
VertexOutEdgeIterator *
out_edge_iterator()
{
return new VertexOutEdgeIterator(self, Sta::sta()->graph());
}
VertexInEdgeIterator *
in_edge_iterator()
{
return new VertexInEdgeIterator(self, Sta::sta()->graph());
}
FloatSeq
arrivals_clk(const RiseFall *rf,
Clock *clk,
const RiseFall *clk_rf)
{
Sta *sta = Sta::sta();
FloatSeq arrivals;
const ClockEdge *clk_edge = nullptr;
if (clk)
clk_edge = clk->edge(clk_rf);
for (auto path_ap : sta->corners()->pathAnalysisPts()) {
arrivals.push_back(delayAsFloat(sta->vertexArrival(self, rf, clk_edge,
path_ap, nullptr)));
}
return arrivals;
}
StringSeq
arrivals_clk_delays(const RiseFall *rf,
Clock *clk,
const RiseFall *clk_rf,
int digits)
{
Sta *sta = Sta::sta();
StringSeq arrivals;
const ClockEdge *clk_edge = nullptr;
if (clk)
clk_edge = clk->edge(clk_rf);
for (auto path_ap : sta->corners()->pathAnalysisPts()) {
arrivals.push_back(delayAsString(sta->vertexArrival(self, rf, clk_edge,
path_ap, nullptr),
sta, digits));
}
return arrivals;
}
FloatSeq
requireds_clk(const RiseFall *rf,
Clock *clk,
const RiseFall *clk_rf)
{
Sta *sta = Sta::sta();
FloatSeq reqs;
const ClockEdge *clk_edge = nullptr;
if (clk)
clk_edge = clk->edge(clk_rf);
for (auto path_ap : sta->corners()->pathAnalysisPts()) {
reqs.push_back(delayAsFloat(sta->vertexRequired(self, rf, clk_edge,
path_ap)));
}
return reqs;
}
StringSeq
requireds_clk_delays(const RiseFall *rf,
Clock *clk,
const RiseFall *clk_rf,
int digits)
{
Sta *sta = Sta::sta();
StringSeq reqs;
const ClockEdge *clk_edge = nullptr;
if (clk)
clk_edge = clk->edge(clk_rf);
for (auto path_ap : sta->corners()->pathAnalysisPts()) {
reqs.push_back(delayAsString(sta->vertexRequired(self, rf, clk_edge, path_ap),
sta, digits));
}
return reqs;
}
Slack
slack(MinMax *min_max)
{
Sta *sta = Sta::sta();
return sta->vertexSlack(self, min_max);
}
FloatSeq
slacks(RiseFall *rf)
{
Sta *sta = Sta::sta();
FloatSeq slacks;
for (auto path_ap : sta->corners()->pathAnalysisPts()) {
slacks.push_back(delayAsFloat(sta->vertexSlack(self, rf, path_ap)));
}
return slacks;
}
// Slack with respect to a clock rise/fall edge.
FloatSeq
slacks_clk(const RiseFall *rf,
Clock *clk,
const RiseFall *clk_rf)
{
Sta *sta = Sta::sta();
FloatSeq slacks;
const ClockEdge *clk_edge = nullptr;
if (clk)
clk_edge = clk->edge(clk_rf);
for (auto path_ap : sta->corners()->pathAnalysisPts()) {
slacks.push_back(delayAsFloat(sta->vertexSlack(self, rf, clk_edge,
path_ap)));
}
return slacks;
}
StringSeq
slacks_clk_delays(const RiseFall *rf,
Clock *clk,
const RiseFall *clk_rf,
int digits)
{
Sta *sta = Sta::sta();
StringSeq slacks;
const ClockEdge *clk_edge = nullptr;
if (clk)
clk_edge = clk->edge(clk_rf);
for (auto path_ap : sta->corners()->pathAnalysisPts()) {
slacks.push_back(delayAsString(sta->vertexSlack(self, rf, clk_edge,
path_ap),
sta, digits));
}
return slacks;
}
VertexPathIterator *
path_iterator(const RiseFall *rf,
const MinMax *min_max)
{
return Sta::sta()->vertexPathIterator(self, rf, min_max);
}
bool
has_downstream_clk_pin()
{
return self->hasDownstreamClkPin();
}
bool
is_clock()
{
Sta *sta = Sta::sta();
Search *search = sta->search();
return search->isClock(self);
}
bool is_disabled_constraint() { return self->isDisabledConstraint(); }
} // Vertex methods
%extend Edge {
Vertex *from() { return self->from(Sta::sta()->graph()); }
Vertex *to() { return self->to(Sta::sta()->graph()); }
Pin *from_pin() { return self->from(Sta::sta()->graph())->pin(); }
Pin *to_pin() { return self->to(Sta::sta()->graph())->pin(); }
const TimingRole *role() { return self->role(); }
const char *sense() { return to_string(self->sense()); }
TimingArcSeq &
timing_arcs() { return self->timingArcSet()->arcs(); }
bool is_disabled_loop() { return Sta::sta()->isDisabledLoop(self); }
bool is_disabled_constraint() { return Sta::sta()->isDisabledConstraint(self);}
bool is_disabled_constant() { return Sta::sta()->isDisabledConstant(self); }
bool is_disabled_cond_default()
{ return Sta::sta()->isDisabledCondDefault(self); }
PinSet
disabled_constant_pins() { return Sta::sta()->disabledConstantPins(self); }
bool is_disabled_bidirect_inst_path()
{ return Sta::sta()->isDisabledBidirectInstPath(self); }
bool is_disabled_bidirect_net_path()
{ return Sta::sta()->isDisabledBidirectNetPath(self); }
bool is_disabled_preset_clear()
{ return Sta::sta()->isDisabledPresetClr(self); }
const char *
sim_timing_sense(){return to_string(Sta::sta()->simTimingSense(self));}
FloatSeq
arc_delays(TimingArc *arc)
{
Sta *sta = Sta::sta();
FloatSeq delays;
for (auto dcalc_ap : sta->corners()->dcalcAnalysisPts())
delays.push_back(delayAsFloat(sta->arcDelay(self, arc, dcalc_ap)));
return delays;
}
StringSeq
arc_delay_strings(TimingArc *arc,
int digits)
{
Sta *sta = Sta::sta();
StringSeq delays;
for (auto dcalc_ap : sta->corners()->dcalcAnalysisPts())
delays.push_back(delayAsString(sta->arcDelay(self, arc, dcalc_ap),
sta, digits));
return delays;
}
bool
delay_annotated(TimingArc *arc,
const Corner *corner,
const MinMax *min_max)
{
DcalcAnalysisPt *dcalc_ap = corner->findDcalcAnalysisPt(min_max);
return Sta::sta()->arcDelayAnnotated(self, arc, dcalc_ap);
}
float
arc_delay(TimingArc *arc,
const Corner *corner,
const MinMax *min_max)
{
DcalcAnalysisPt *dcalc_ap = corner->findDcalcAnalysisPt(min_max);
return delayAsFloat(Sta::sta()->arcDelay(self, arc, dcalc_ap));
}
string
cond()
{
FuncExpr *cond = self->timingArcSet()->cond();
if (cond)
return cond->to_string();
else
return "";
}
const char *
mode_name()
{
return self->timingArcSet()->modeName();
}
const char *
mode_value()
{
return self->timingArcSet()->modeValue();
}
const char *
latch_d_to_q_en()
{
if (self->role() == TimingRole::latchDtoQ()) {
Sta *sta = Sta::sta();
const Network *network = sta->network();
const Graph *graph = sta->ensureGraph();
Pin *from_pin = self->from(graph)->pin();
Instance *inst = network->instance(from_pin);
LibertyCell *lib_cell = network->libertyCell(inst);
TimingArcSet *d_q_set = self->timingArcSet();
const LibertyPort *enable_port;
const FuncExpr *enable_func;
const RiseFall *enable_rf;
lib_cell->latchEnable(d_q_set, enable_port, enable_func, enable_rf);
if (enable_port)
return stringPrintTmp("%s %s",
enable_port->name(),
enable_rf->to_string().c_str());
}
return "";
}
} // Edge methods
%extend VertexIterator {
bool has_next() { return self->hasNext(); }
Vertex *next() { return self->next(); }
void finish() { delete self; }
}
%extend VertexInEdgeIterator {
bool has_next() { return self->hasNext(); }
Edge *next() { return self->next(); }
void finish() { delete self; }
}
%extend VertexOutEdgeIterator {
bool has_next() { return self->hasNext(); }
Edge *next() { return self->next(); }
void finish() { delete self; }
}