OpenSTA/search/CheckSlewLimits.cc

383 lines
10 KiB
C++

// OpenSTA, Static Timing Analyzer
// Copyright (c) 2018, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include "Machine.hh"
#include "Fuzzy.hh"
#include "Liberty.hh"
#include "Network.hh"
#include "Sdc.hh"
#include "Graph.hh"
#include "StaState.hh"
#include "DcalcAnalysisPt.hh"
#include "Corner.hh"
#include "PathVertex.hh"
#include "Search.hh"
#include "CheckSlewLimits.hh"
namespace sta {
class PinSlewLimitSlackLess
{
public:
PinSlewLimitSlackLess(const Corner *corner,
const MinMax *min_max,
CheckSlewLimits *check_slew_limit,
const StaState *sta);
bool operator()(Pin *pin1,
Pin *pin2) const;
private:
const Corner *corner_;
const MinMax *min_max_;
CheckSlewLimits *check_slew_limit_;
const StaState *sta_;
};
PinSlewLimitSlackLess::PinSlewLimitSlackLess(const Corner *corner,
const MinMax *min_max,
CheckSlewLimits *check_slew_limit,
const StaState *sta) :
corner_(corner),
min_max_(min_max),
check_slew_limit_(check_slew_limit),
sta_(sta)
{
}
bool
PinSlewLimitSlackLess::operator()(Pin *pin1,
Pin *pin2) const
{
const Corner *corner1, *corner2;
const TransRiseFall *tr1, *tr2;
Slew slew1, slew2;
float limit1, limit2, slack1, slack2;
check_slew_limit_->checkSlews(pin1, corner_, min_max_,
corner1, tr1, slew1, limit1, slack1);
check_slew_limit_->checkSlews(pin2, corner_, min_max_,
corner2, tr2, slew2, limit2, slack2);
return slack1 < slack2
|| (fuzzyEqual(slack1, slack2)
// Break ties for the sake of regression stability.
&& sta_->network()->pinLess(pin1, pin2));
}
////////////////////////////////////////////////////////////////
CheckSlewLimits::CheckSlewLimits(const StaState *sta) :
sta_(sta)
{
}
void
CheckSlewLimits::init(const MinMax *min_max)
{
const Network *network = sta_->network();
Cell *top_cell = network->cell(network->topInstance());
float top_limit;
bool top_limit_exists;
sta_->sdc()->slewLimit(top_cell, min_max,
top_limit, top_limit_exists);
top_limit_= top_limit;
top_limit_exists_ = top_limit_exists;
}
void
CheckSlewLimits::checkSlews(const Pin *pin,
const Corner *corner,
const MinMax *min_max,
// Return values.
const Corner *&corner1,
const TransRiseFall *&tr,
Slew &slew,
float &limit,
float &slack) const
{
corner1 = NULL;
tr = NULL;
slack = MinMax::min()->initValue();
if (corner)
checkSlews1(pin, corner, min_max,
corner1, tr, slew, limit, slack);
else {
CornerIterator corner_iter(sta_);
while (corner_iter.hasNext()) {
const Corner *corner2 = corner_iter.next();
checkSlews1(pin, corner2, min_max,
corner1, tr, slew, limit, slack);
}
}
}
void
CheckSlewLimits::checkSlews1(const Pin *pin,
const Corner *corner,
const MinMax *min_max,
// Return values.
const Corner *&corner1,
const TransRiseFall *&tr,
Slew &slew,
float &limit,
float &slack) const
{
Vertex *vertex, *bidirect_drvr_vertex;
sta_->graph()->pinVertices(pin, vertex, bidirect_drvr_vertex);
checkSlews1(vertex, corner, min_max,
corner1, tr, slew, limit, slack);
if (bidirect_drvr_vertex)
checkSlews1(bidirect_drvr_vertex, corner, min_max,
corner1, tr, slew, limit, slack);
}
void
CheckSlewLimits::checkSlews1(Vertex *vertex,
const Corner *corner1,
const MinMax *min_max,
// Return values.
const Corner *&corner,
const TransRiseFall *&tr,
Slew &slew,
float &limit,
float &slack) const
{
TransRiseFallIterator tr_iter;
while (tr_iter.hasNext()) {
TransRiseFall *tr1 = tr_iter.next();
float limit1;
bool limit1_exists;
findLimit(vertex->pin(), vertex, tr1, min_max, limit1, limit1_exists);
if (limit1_exists) {
checkSlew(vertex, corner1, min_max, tr1, limit1,
corner, tr, slew, slack, limit);
}
}
}
void
CheckSlewLimits::findLimit(const Pin *pin,
const Vertex *vertex,
const TransRiseFall *tr,
const MinMax *min_max,
// Return values.
float &limit1,
bool &limit1_exists) const
{
limit1_exists = false;
const Network *network = sta_->network();
Sdc *sdc = sta_->sdc();
bool is_clk = sta_->search()->isClock(vertex);
// Look for clock slew limits.
ClockSet clks;
clockDomains(vertex, clks);
ClockSet::Iterator clk_iter(clks);
while (clk_iter.hasNext()) {
Clock *clk = clk_iter.next();
PathClkOrData clk_data = is_clk ? path_clk : path_data;
float clk_limit;
bool clk_limit_exists;
sdc->slewLimit(clk, tr, clk_data, min_max,
clk_limit, clk_limit_exists);
if (clk_limit_exists
&& (!limit1_exists
|| min_max->compare(limit1, clk_limit))) {
// Use the tightest clock limit.
limit1 = clk_limit;
limit1_exists = true;
}
}
if (!limit1_exists) {
// Default to top ("design") limit.
limit1_exists = top_limit_exists_;
limit1 = top_limit_;
if (network->isTopLevelPort(pin)) {
Port *port = network->port(pin);
float port_limit;
bool port_limit_exists;
sdc->slewLimit(port, min_max, port_limit, port_limit_exists);
// Use the tightest limit.
if (port_limit_exists
&& (!limit1_exists
|| min_max->compare(limit1, port_limit))) {
limit1 = port_limit;
limit1_exists = true;
}
}
else {
float pin_limit;
bool pin_limit_exists;
sdc->slewLimit(pin, min_max,
pin_limit, pin_limit_exists);
// Use the tightest limit.
if (pin_limit_exists
&& (!limit1_exists
|| min_max->compare(limit1, pin_limit))) {
limit1 = pin_limit;
limit1_exists = true;
}
float port_limit;
bool port_limit_exists;
LibertyPort *port = network->libertyPort(pin);
if (port) {
port->slewLimit(min_max, port_limit, port_limit_exists);
// Use the tightest limit.
if (port_limit_exists
&& (!limit1_exists
|| min_max->compare(limit1, port_limit))) {
limit1 = port_limit;
limit1_exists = true;
}
}
}
}
}
void
CheckSlewLimits::clockDomains(const Vertex *vertex,
// Return value.
ClockSet &clks) const
{
VertexPathIterator path_iter(const_cast<Vertex*>(vertex), sta_);
while (path_iter.hasNext()) {
Path *path = path_iter.next();
Clock *clk = path->clock(sta_);
if (clk)
clks.insert(clk);
}
}
void
CheckSlewLimits::checkSlew(Vertex *vertex,
const Corner *corner1,
const MinMax *min_max,
const TransRiseFall *tr1,
float limit1,
// Return values.
const Corner *&corner,
const TransRiseFall *&tr,
Slew &slew,
float &slack,
float &limit) const
{
const DcalcAnalysisPt *dcalc_ap = corner1->findDcalcAnalysisPt(min_max);
Slew slew1 = sta_->graph()->slew(vertex, tr1, dcalc_ap->index());
float slew2 = delayAsFloat(slew1);
float slack1 = (min_max == MinMax::max())
? limit1 - slew2 : slew2 - limit1;
if (corner == NULL
|| (slack1 < slack
// Break ties for the sake of regression stability.
|| (fuzzyEqual(slack1, slack)
&& tr1->index() < tr->index()))) {
corner = corner1;
tr = tr1;
slew = slew1;
slack = slack1;
limit = limit1;
}
}
PinSeq *
CheckSlewLimits::pinSlewLimitViolations(const Corner *corner,
const MinMax *min_max)
{
init(min_max);
const Network *network = sta_->network();
PinSeq *violators = new PinSeq;
LeafInstanceIterator *inst_iter = network->leafInstanceIterator();
while (inst_iter->hasNext()) {
Instance *inst = inst_iter->next();
pinSlewLimitViolations(inst, corner, min_max, violators);
}
delete inst_iter;
// Check top level ports.
pinSlewLimitViolations(network->topInstance(), corner, min_max, violators);
sort(violators, PinSlewLimitSlackLess(corner, min_max, this, sta_));
return violators;
}
void
CheckSlewLimits::pinSlewLimitViolations(Instance *inst,
const Corner *corner,
const MinMax *min_max,
PinSeq *violators)
{
const Network *network = sta_->network();
InstancePinIterator *pin_iter = network->pinIterator(inst);
while (pin_iter->hasNext()) {
Pin *pin = pin_iter->next();
const Corner *corner1;
const TransRiseFall *tr;
Slew slew;
float limit, slack;
checkSlews(pin, corner, min_max, corner1, tr, slew, limit, slack );
if (tr && slack < 0.0)
violators->push_back(pin);
}
delete pin_iter;
}
Pin *
CheckSlewLimits::pinMinSlewLimitSlack(const Corner *corner,
const MinMax *min_max)
{
init(min_max);
const Network *network = sta_->network();
Pin *min_slack_pin = 0;
float min_slack = MinMax::min()->initValue();
LeafInstanceIterator *inst_iter = network->leafInstanceIterator();
while (inst_iter->hasNext()) {
Instance *inst = inst_iter->next();
pinMinSlewLimitSlack(inst, corner, min_max, min_slack_pin, min_slack);
}
delete inst_iter;
// Check top level ports.
pinMinSlewLimitSlack(network->topInstance(), corner, min_max,
min_slack_pin, min_slack);
return min_slack_pin;
}
void
CheckSlewLimits::pinMinSlewLimitSlack(Instance *inst,
const Corner *corner,
const MinMax *min_max,
// Return values.
Pin *&min_slack_pin,
float &min_slack)
{
const Network *network = sta_->network();
InstancePinIterator *pin_iter = network->pinIterator(inst);
while (pin_iter->hasNext()) {
Pin *pin = pin_iter->next();
const Corner *corner1;
const TransRiseFall *tr;
Slew slew;
float limit, slack;
checkSlews(pin, corner, min_max, corner1, tr, slew, limit, slack);
if (tr
&& (min_slack_pin == 0
|| slack < min_slack)) {
min_slack_pin = pin;
min_slack = slack;
}
}
delete pin_iter;
}
} // namespace