OpenSTA/search/Bfs.cc

561 lines
12 KiB
C++

// OpenSTA, Static Timing Analyzer
// Copyright (c) 2018, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include <limits.h>
#include "Machine.hh"
#include "Report.hh"
#include "Debug.hh"
#include "ThreadForEach.hh"
#include "Network.hh"
#include "Graph.hh"
#include "Levelize.hh"
#include "Sdc.hh"
#include "SearchPred.hh"
#include "Bfs.hh"
namespace sta {
BfsList::BfsList(Vertex *vertex,
BfsList *next) :
vertex_(vertex),
next_(next)
{
}
void
BfsList::setVertex(Vertex *vertex)
{
vertex_ = vertex;
}
void
BfsList::setNext(BfsList *next)
{
next_ = next;
}
class BfsListIterator
{
public:
explicit BfsListIterator(BfsList *list,
BfsIterator *bfs,
BfsIndex bfs_index);
bool hasNext() { return next_ != NULL; }
Vertex *next();
int count() const { return count_; }
private:
BfsIterator *bfs_;
BfsIndex bfs_index_;
BfsList *next_;
int count_;
};
BfsListIterator::BfsListIterator(BfsList *list,
BfsIterator *bfs,
BfsIndex bfs_index) :
bfs_(bfs),
bfs_index_(bfs_index),
next_(list),
count_(0)
{
}
Vertex *
BfsListIterator::next()
{
Vertex *vertex = next_->vertex();
BfsList *next = next_->next();
bfs_->freeList(next_);
next_ = next;
vertex->setBfsInQueue(bfs_index_, false);
count_++;
return vertex;
}
////////////////////////////////////////////////////////////////
BfsIterator::BfsIterator(BfsIndex bfs_index,
Level level_min,
Level level_max,
SearchPred *search_pred,
StaState *sta) :
StaState(sta),
bfs_index_(bfs_index),
level_min_(level_min),
level_max_(level_max),
search_pred_(search_pred),
list_free_(NULL)
{
}
void
BfsIterator::init()
{
first_level_ = level_max_;
last_level_ = level_min_;
ensureSize();
}
void
BfsIterator::ensureSize()
{
if (levelize_->levelized()) {
unsigned max_level_1 = levelize_->maxLevel() + 1;
if (queue_.size() < max_level_1)
queue_.resize(max_level_1);
}
}
BfsIterator::~BfsIterator()
{
// Delete free list.
while (list_free_) {
BfsList *next = list_free_->next();
delete list_free_;
list_free_ = next;
}
}
void
BfsIterator::clear()
{
Level level = first_level_;
while (levelLessOrEqual(level, last_level_)) {
BfsList *level_vertices = queue_[level];
if (level_vertices) {
for (BfsList *l = level_vertices, *next; l; l = next) {
Vertex *vertex = l->vertex();
vertex->setBfsInQueue(bfs_index_, false);
next = l->next();
freeList(l);
}
queue_[level] = NULL;
}
incrLevel(level);
}
init();
}
void
BfsIterator::reportEntries(const Network *network)
{
Level level = first_level_;
while (levelLessOrEqual(level, last_level_)) {
BfsList *level_vertices = queue_[level];
if (level_vertices) {
printf("Level %d\n", level);
for (BfsList *l = level_vertices, *next; l; l = next) {
Vertex *vertex = l->vertex();
printf(" %s\n", vertex->name(network));
next = l->next();
}
}
incrLevel(level);
}
}
void
BfsIterator::deleteEntries(Level level)
{
BfsList *level_vertices = queue_[level];
if (level_vertices) {
for (BfsList *l = level_vertices, *next; l; l = next) {
Vertex *vertex = l->vertex();
vertex->setBfsInQueue(bfs_index_, false);
next = l->next();
delete l;
}
}
}
bool
BfsIterator::empty() const
{
return levelLess(last_level_, first_level_);
}
void
BfsIterator::enqueueAdjacentVertices(Vertex *vertex)
{
enqueueAdjacentVertices(vertex, search_pred_, level_max_);
}
void
BfsIterator::enqueueAdjacentVertices(Vertex *vertex,
SearchPred *search_pred)
{
enqueueAdjacentVertices(vertex, search_pred, level_max_);
}
void
BfsIterator::enqueueAdjacentVertices(Vertex *vertex,
Level to_level)
{
enqueueAdjacentVertices(vertex, search_pred_, to_level);
}
int
BfsIterator::visit(Level to_level,
VertexVisitor *visitor)
{
int visit_count = 0;
while (levelLessOrEqual(first_level_, last_level_)
&& levelLessOrEqual(first_level_, to_level)) {
BfsList *level_vertices = queue_[first_level_];
if (level_vertices) {
// Remove vertices from queue.
queue_[first_level_] = NULL;
incrLevel(first_level_);
for (BfsList *l = level_vertices, *next; l; l = next) {
Vertex *vertex = l->vertex();
vertex->setBfsInQueue(bfs_index_, false);
visitor->visit(vertex);
next = l->next();
freeList(l);
visit_count++;
}
}
else
incrLevel(first_level_);
}
return visit_count;
}
int
BfsIterator::visitParallel(Level to_level,
VertexVisitor *visitor)
{
int visit_count = 0;
if (!empty()) {
int thread_count = threadCount();
if (thread_count <= 1)
visit_count = visit(to_level, visitor);
else {
ForEachArg<BfsListIterator, VertexVisitor> *args =
new ForEachArg<BfsListIterator,VertexVisitor>[thread_count];
Thread *threads = new Thread[thread_count];
Mutex lock;
for (int i = 0; i < thread_count; i++) {
ForEachArg<BfsListIterator,VertexVisitor> *arg = &args[i];
arg->lock_ = &lock;
arg->func_ = visitor->copy();
}
Level level = first_level_;
while (levelLessOrEqual(level, last_level_)
&& levelLessOrEqual(level, to_level)) {
BfsList *level_vertices = queue_[level];
if (level_vertices) {
// Remove level vertices from queue.
queue_[level] = NULL;
incrLevel(first_level_);
BfsListIterator iter(level_vertices, this, bfs_index_);
for (int i = 0; i < thread_count; i++) {
ForEachArg<BfsListIterator,VertexVisitor> *arg = &args[i];
// Initialize the iterator for this level's vertices.
arg->iter_ = &iter;
threads[i].beginTask(forEachBegin<BfsListIterator,
VertexVisitor, Vertex*>,
reinterpret_cast<void*>(arg));
}
// Wait for all threads working on this level before moving on.
for (int i = 0; i < thread_count; i++)
threads[i].wait();
visit_count += iter.count();
level = first_level_;
}
else {
incrLevel(first_level_);
level = first_level_;
}
}
for (int i = 0; i < thread_count; i++) {
ForEachArg<BfsListIterator,VertexVisitor> *arg = &args[i];
delete arg->func_;
}
delete [] threads;
delete [] args;
}
}
return visit_count;
}
bool
BfsIterator::hasNext()
{
return hasNext(last_level_);
}
bool
BfsIterator::hasNext(Level to_level)
{
findNext(to_level);
return levelLessOrEqual(first_level_, last_level_)
&& queue_[first_level_] != NULL;
}
Vertex *
BfsIterator::next()
{
BfsList *head = queue_[first_level_];
Vertex *vertex = head->vertex();
vertex->setBfsInQueue(bfs_index_, false);
queue_[first_level_] = head->next();
freeList(head);
return vertex;
}
void
BfsIterator::findNext(Level to_level)
{
while (levelLessOrEqual(first_level_, last_level_)
&& levelLessOrEqual(first_level_, to_level)
&& queue_[first_level_] == NULL)
incrLevel(first_level_);
}
void
BfsIterator::enqueue(Vertex *vertex)
{
debugPrint1(debug_, "bfs", 2, "enqueue %s\n", vertex->name(sdc_network_));
Level level = vertex->level();
if (!vertex->bfsInQueue(bfs_index_)) {
queue_lock_.lock();
if (!vertex->bfsInQueue(bfs_index_)) {
vertex->setBfsInQueue(bfs_index_, true);
queue_[level] = makeList(vertex, queue_[level]);
if (levelLess(last_level_, level))
last_level_ = level;
if (levelLess(level, first_level_))
first_level_ = level;
}
queue_lock_.unlock();
}
}
bool
BfsIterator::inQueue(Vertex *vertex)
{
// checkInQueue(vertex);
return vertex->bfsInQueue(bfs_index_);
}
void
BfsIterator::checkInQueue(Vertex *vertex)
{
Level level = vertex->level();
if (static_cast<Level>(queue_.size()) > level) {
for (BfsList *l = queue_[level]; l; l = l->next()) {
if (l->vertex() == vertex) {
if (vertex->bfsInQueue(bfs_index_))
return;
else
printf("extra %s\n", vertex->name(sdc_network_));
}
}
}
if (vertex->bfsInQueue(bfs_index_))
printf("missing %s\n", vertex->name(sdc_network_));
}
void
BfsIterator::deleteVertexBefore(Vertex *vertex)
{
remove(vertex);
}
void
BfsIterator::remove(Vertex *vertex)
{
// If the iterator has not been inited the queue will be empty.
Level level = vertex->level();
if (vertex->bfsInQueue(bfs_index_)
&& static_cast<Level>(queue_.size()) > level) {
BfsList *next, *prev = NULL;
for (BfsList *l = queue_[level]; l; l = next) {
next = l->next();
if (l->vertex() == vertex) {
if (prev)
prev->setNext(next);
else
queue_[level] = next;
vertex->setBfsInQueue(bfs_index_, false);
freeList(l);
break;
}
prev = l;
}
}
}
BfsList *
BfsIterator::makeList(Vertex *vertex,
BfsList *next)
{
BfsList *l;
list_lock_.lock();
if (list_free_) {
l = list_free_;
list_free_ = l->next();
list_lock_.unlock();
l->setVertex(vertex);
l->setNext(next);
}
else {
list_lock_.unlock();
l = new BfsList(vertex, next);
}
return l;
}
void
BfsIterator::freeList(BfsList *l)
{
list_lock_.lock();
l->setNext(list_free_);
list_free_ = l;
list_lock_.unlock();
}
void
BfsIterator::deleteList(BfsList *list)
{
while (list) {
BfsList *next = list->next();
list->vertex()->setBfsInQueue(bfs_index_, false);
delete list;
list = next;
}
}
////////////////////////////////////////////////////////////////
BfsFwdIterator::BfsFwdIterator(BfsIndex bfs_index,
SearchPred *search_pred,
StaState *sta) :
BfsIterator(bfs_index, 0, INT_MAX, search_pred, sta)
{
init();
}
// clear() without saving lists to list_free_.
BfsFwdIterator::~BfsFwdIterator()
{
for (Level level = first_level_; level <= last_level_; level++)
deleteEntries(level);
}
void
BfsFwdIterator::incrLevel(Level &level)
{
level++;
}
bool
BfsFwdIterator::levelLessOrEqual(Level level1,
Level level2) const
{
return level1 <= level2;
}
bool
BfsFwdIterator::levelLess(Level level1,
Level level2) const
{
return level1 < level2;
}
void
BfsFwdIterator::enqueueAdjacentVertices(Vertex *vertex,
SearchPred *search_pred,
Level to_level)
{
if (search_pred->searchFrom(vertex)) {
VertexOutEdgeIterator edge_iter(vertex, graph_);
while (edge_iter.hasNext()) {
Edge *edge = edge_iter.next();
Vertex *to_vertex = edge->to(graph_);
if (to_vertex->level() <= to_level
&& search_pred->searchThru(edge)
&& search_pred->searchTo(to_vertex))
enqueue(to_vertex);
}
}
}
////////////////////////////////////////////////////////////////
BfsBkwdIterator::BfsBkwdIterator(BfsIndex bfs_index,
SearchPred *search_pred,
StaState *sta) :
BfsIterator(bfs_index, INT_MAX, 0, search_pred, sta)
{
init();
}
// clear() without saving lists to list_free_.
BfsBkwdIterator::~BfsBkwdIterator()
{
for (Level level = first_level_; level >= last_level_; level--)
deleteEntries(level);
}
void
BfsBkwdIterator::incrLevel(Level &level)
{
level--;
}
bool
BfsBkwdIterator::levelLessOrEqual(Level level1,
Level level2) const
{
return level1 >= level2;
}
bool
BfsBkwdIterator::levelLess(Level level1,
Level level2) const
{
return level1 > level2;
}
void
BfsBkwdIterator::enqueueAdjacentVertices(Vertex *vertex,
SearchPred *search_pred,
Level to_level)
{
if (search_pred->searchTo(vertex)) {
VertexInEdgeIterator edge_iter(vertex, graph_);
while (edge_iter.hasNext()) {
Edge *edge = edge_iter.next();
Vertex *from_vertex = edge->from(graph_);
if (from_vertex->level() >= to_level
&& search_pred->searchFrom(from_vertex)
&& search_pred->searchThru(edge))
enqueue(from_vertex);
}
}
}
} // namespace