902 lines
29 KiB
C++
902 lines
29 KiB
C++
// OpenSTA, Static Timing Analyzer
|
|
// Copyright (c) 2023, Parallax Software, Inc.
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
#include "CcsSimDelayCalc.hh"
|
|
|
|
#include <cmath> // abs
|
|
|
|
#include "Debug.hh"
|
|
#include "Units.hh"
|
|
#include "TimingArc.hh"
|
|
#include "Liberty.hh"
|
|
#include "Sdc.hh"
|
|
#include "Parasitics.hh"
|
|
#include "DcalcAnalysisPt.hh"
|
|
#include "Network.hh"
|
|
#include "Corner.hh"
|
|
#include "Graph.hh"
|
|
#include "GraphDelayCalc.hh"
|
|
#include "DmpDelayCalc.hh"
|
|
|
|
namespace sta {
|
|
|
|
using std::abs;
|
|
using std::make_shared;
|
|
|
|
// Lawrence Pillage - “Electronic Circuit & System Simulation Methods” 1998
|
|
// McGraw-Hill, Inc. New York, NY.
|
|
|
|
ArcDelayCalc *
|
|
makeCcsSimDelayCalc(StaState *sta)
|
|
{
|
|
return new CcsSimDelayCalc(sta);
|
|
}
|
|
|
|
CcsSimDelayCalc::CcsSimDelayCalc(StaState *sta) :
|
|
DelayCalcBase(sta),
|
|
dcalc_args_(nullptr),
|
|
load_pin_index_map_(network_),
|
|
dcalc_failed_(false),
|
|
pin_node_map_(network_),
|
|
make_waveforms_(false),
|
|
waveform_drvr_pin_(nullptr),
|
|
waveform_load_pin_(nullptr),
|
|
table_dcalc_(makeDmpCeffElmoreDelayCalc(sta))
|
|
{
|
|
}
|
|
|
|
CcsSimDelayCalc::~CcsSimDelayCalc()
|
|
{
|
|
delete table_dcalc_;
|
|
}
|
|
|
|
ArcDelayCalc *
|
|
CcsSimDelayCalc::copy()
|
|
{
|
|
return new CcsSimDelayCalc(this);
|
|
}
|
|
|
|
Parasitic *
|
|
CcsSimDelayCalc::findParasitic(const Pin *drvr_pin,
|
|
const RiseFall *,
|
|
const DcalcAnalysisPt *dcalc_ap)
|
|
{
|
|
const Corner *corner = dcalc_ap->corner();
|
|
Parasitic *parasitic = nullptr;
|
|
// set_load net has precidence over parasitics.
|
|
if (!sdc_->drvrPinHasWireCap(drvr_pin, corner)) {
|
|
const ParasiticAnalysisPt *parasitic_ap = dcalc_ap->parasiticAnalysisPt();
|
|
if (parasitics_->haveParasitics())
|
|
parasitic = parasitics_->findParasiticNetwork(drvr_pin, parasitic_ap);
|
|
}
|
|
return parasitic;
|
|
}
|
|
|
|
Parasitic *
|
|
CcsSimDelayCalc::reduceParasitic(const Parasitic *parasitic_network,
|
|
const Pin *,
|
|
const RiseFall *,
|
|
const DcalcAnalysisPt *)
|
|
{
|
|
return const_cast<Parasitic *>(parasitic_network);
|
|
}
|
|
|
|
ArcDcalcResult
|
|
CcsSimDelayCalc::inputPortDelay(const Pin *drvr_pin,
|
|
float in_slew,
|
|
const RiseFall *rf,
|
|
const Parasitic *parasitic,
|
|
const LoadPinIndexMap &load_pin_index_map,
|
|
const DcalcAnalysisPt *dcalc_ap)
|
|
{
|
|
ArcDcalcResult dcalc_result(load_pin_index_map.size());
|
|
LibertyLibrary *drvr_library = network_->defaultLibertyLibrary();
|
|
|
|
const Parasitic *pi_elmore = nullptr;
|
|
if (parasitic && parasitics_->isParasiticNetwork(parasitic)) {
|
|
const ParasiticAnalysisPt *ap = dcalc_ap->parasiticAnalysisPt();
|
|
parasitics_->reduceToPiElmore(parasitic, drvr_pin, rf,
|
|
dcalc_ap->corner(),
|
|
dcalc_ap->constraintMinMax(), ap);
|
|
pi_elmore = parasitics_->findPiElmore(drvr_pin, rf, ap);
|
|
}
|
|
|
|
for (auto load_pin_index : load_pin_index_map) {
|
|
const Pin *load_pin = load_pin_index.first;
|
|
size_t load_idx = load_pin_index.second;
|
|
ArcDelay wire_delay = 0.0;
|
|
Slew load_slew = in_slew;
|
|
bool elmore_exists = false;
|
|
float elmore = 0.0;
|
|
if (pi_elmore)
|
|
parasitics_->findElmore(pi_elmore, load_pin, elmore, elmore_exists);
|
|
if (elmore_exists)
|
|
// Input port with no external driver.
|
|
dspfWireDelaySlew(load_pin, rf, in_slew, elmore, wire_delay, load_slew);
|
|
thresholdAdjust(load_pin, drvr_library, rf, wire_delay, load_slew);
|
|
dcalc_result.setWireDelay(load_idx, wire_delay);
|
|
dcalc_result.setLoadSlew(load_idx, load_slew);
|
|
}
|
|
return dcalc_result;
|
|
}
|
|
|
|
ArcDcalcResult
|
|
CcsSimDelayCalc::gateDelay(const Pin *drvr_pin,
|
|
const TimingArc *arc,
|
|
const Slew &in_slew,
|
|
float load_cap,
|
|
const Parasitic *parasitic,
|
|
const LoadPinIndexMap &load_pin_index_map,
|
|
const DcalcAnalysisPt *dcalc_ap)
|
|
{
|
|
Vertex *drvr_vertex = graph_->pinDrvrVertex(drvr_pin);
|
|
load_pin_index_map_ = graph_delay_calc_->makeLoadPinIndexMap(drvr_vertex);
|
|
ArcDcalcArgSeq dcalc_args;
|
|
dcalc_args.emplace_back(nullptr, drvr_pin, nullptr, arc, in_slew, parasitic);
|
|
ArcDcalcResultSeq dcalc_results = gateDelays(dcalc_args, load_cap,
|
|
load_pin_index_map, dcalc_ap);
|
|
return dcalc_results[0];
|
|
}
|
|
|
|
ArcDcalcResultSeq
|
|
CcsSimDelayCalc::gateDelays(ArcDcalcArgSeq &dcalc_args,
|
|
float load_cap,
|
|
const LoadPinIndexMap &load_pin_index_map,
|
|
const DcalcAnalysisPt *dcalc_ap)
|
|
{
|
|
dcalc_args_ = &dcalc_args;
|
|
load_pin_index_map_ = load_pin_index_map;
|
|
drvr_count_ = dcalc_args.size();
|
|
load_cap_ = load_cap;
|
|
dcalc_ap_ = dcalc_ap;
|
|
drvr_rf_ = dcalc_args[0].arc()->toEdge()->asRiseFall();
|
|
dcalc_failed_ = false;
|
|
parasitic_network_ = dcalc_args[0].parasitic();
|
|
ArcDcalcResultSeq dcalc_results(drvr_count_);
|
|
|
|
// Assume drivers are in the same library.
|
|
LibertyCell *drvr_cell = dcalc_args[0].arc()->to()->libertyCell();
|
|
const LibertyLibrary *drvr_library = drvr_cell->libertyLibrary();
|
|
bool vdd_exists;
|
|
drvr_library->supplyVoltage("VDD", vdd_, vdd_exists);
|
|
if (!vdd_exists)
|
|
report_->error(1720, "VDD not defined in library %s", drvr_library->name());
|
|
vth_ = drvr_library->outputThreshold(drvr_rf_) * vdd_;
|
|
vl_ = drvr_library->slewLowerThreshold(drvr_rf_) * vdd_;
|
|
vh_ = drvr_library->slewUpperThreshold(drvr_rf_) * vdd_;
|
|
drvr_cell->ensureVoltageWaveforms();
|
|
|
|
size_t drvr_count = dcalc_args.size();
|
|
output_waveforms_.resize(drvr_count);
|
|
ref_time_.resize(drvr_count);
|
|
|
|
for (size_t drvr_idx = 0; drvr_idx < dcalc_args.size(); drvr_idx++) {
|
|
ArcDcalcArg &dcalc_arg = dcalc_args[drvr_idx];
|
|
GateTableModel *table_model = gateTableModel(dcalc_arg.arc(), dcalc_ap);
|
|
if (table_model && dcalc_arg.parasitic()) {
|
|
OutputWaveforms *output_waveforms = table_model->outputWaveforms();
|
|
Slew in_slew = dcalc_arg.inSlew();
|
|
if (output_waveforms
|
|
// Bounds check because extrapolating waveforms does not work for shit.
|
|
&& output_waveforms->slewAxis()->inBounds(in_slew)
|
|
&& output_waveforms->capAxis()->inBounds(load_cap)) {
|
|
output_waveforms_[drvr_idx] = output_waveforms;
|
|
ref_time_[drvr_idx] = output_waveforms->referenceTime(in_slew);
|
|
debugPrint(debug_, "ccs_dcalc", 1, "%s %s",
|
|
network_->libertyPort(dcalc_arg.drvrPin())->libertyCell()->name(),
|
|
drvr_rf_->asString());
|
|
}
|
|
else
|
|
dcalc_failed_ = true;
|
|
}
|
|
else
|
|
dcalc_failed_ = true;
|
|
}
|
|
|
|
if (dcalc_failed_) {
|
|
const Parasitic *parasitic_network = dcalc_args[0].parasitic();
|
|
for (size_t drvr_idx = 0; drvr_idx < dcalc_args.size(); drvr_idx++) {
|
|
ArcDcalcArg &dcalc_arg = dcalc_args[drvr_idx];
|
|
Parasitic *pi_elmore = nullptr;
|
|
const Pin *drvr_pin = dcalc_arg.drvrPin();
|
|
if (parasitic_network) {
|
|
const ParasiticAnalysisPt *ap = dcalc_ap_->parasiticAnalysisPt();
|
|
parasitics_->reduceToPiElmore(parasitic_network, drvr_pin, drvr_rf_,
|
|
dcalc_ap_->corner(),
|
|
dcalc_ap_->constraintMinMax(), ap);
|
|
pi_elmore = parasitics_->findPiElmore(drvr_pin, drvr_rf_, ap);
|
|
dcalc_arg.setParasitic(pi_elmore);
|
|
}
|
|
}
|
|
dcalc_results = table_dcalc_->gateDelays(dcalc_args, load_cap,
|
|
load_pin_index_map, dcalc_ap);
|
|
}
|
|
else {
|
|
simulate(dcalc_args);
|
|
|
|
for (size_t drvr_idx = 0; drvr_idx < dcalc_args.size(); drvr_idx++) {
|
|
ArcDcalcArg &dcalc_arg = dcalc_args[drvr_idx];
|
|
ArcDcalcResult &dcalc_result = dcalc_results[drvr_idx];
|
|
const Pin *drvr_pin = dcalc_arg.drvrPin();
|
|
size_t drvr_node = pin_node_map_[drvr_pin];
|
|
ThresholdTimes &drvr_times = threshold_times_[drvr_node];
|
|
ArcDelay gate_delay = drvr_times[threshold_vth] - ref_time_[drvr_idx];
|
|
Slew drvr_slew = abs(drvr_times[threshold_vh] - drvr_times[threshold_vl]);
|
|
dcalc_result.setGateDelay(gate_delay);
|
|
dcalc_result.setDrvrSlew(drvr_slew);
|
|
debugPrint(debug_, "ccs_dcalc", 2,
|
|
"%s gate delay %s slew %s",
|
|
network_->pathName(drvr_pin),
|
|
delayAsString(gate_delay, this),
|
|
delayAsString(drvr_slew, this));
|
|
|
|
dcalc_result.setLoadCount(load_pin_index_map.size());
|
|
for (auto load_pin_index : load_pin_index_map) {
|
|
const Pin *load_pin = load_pin_index.first;
|
|
size_t load_idx = load_pin_index.second;
|
|
size_t load_node = pin_node_map_[load_pin];
|
|
ThresholdTimes &wire_times = threshold_times_[load_node];
|
|
ThresholdTimes &drvr_times = threshold_times_[drvr_node];
|
|
ArcDelay wire_delay = wire_times[threshold_vth] - drvr_times[threshold_vth];
|
|
Slew load_slew = abs(wire_times[threshold_vh] - wire_times[threshold_vl]);
|
|
debugPrint(debug_, "ccs_dcalc", 2,
|
|
"load %s %s delay %s slew %s",
|
|
network_->pathName(load_pin),
|
|
drvr_rf_->asString(),
|
|
delayAsString(wire_delay, this),
|
|
delayAsString(load_slew, this));
|
|
|
|
thresholdAdjust(load_pin, drvr_library, drvr_rf_, wire_delay, load_slew);
|
|
dcalc_result.setWireDelay(load_idx, wire_delay);
|
|
dcalc_result.setLoadSlew(load_idx, load_slew);
|
|
}
|
|
}
|
|
}
|
|
return dcalc_results;
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::simulate(ArcDcalcArgSeq &dcalc_args)
|
|
{
|
|
const Pin *drvr_pin = dcalc_args[0].drvrPin();
|
|
LibertyPort *drvr_port = network_->libertyPort(drvr_pin);
|
|
const MinMax *min_max = dcalc_ap_->delayMinMax();
|
|
drive_resistance_ = drvr_port->driveResistance(drvr_rf_, min_max);
|
|
|
|
initSim();
|
|
stampConductances();
|
|
|
|
// The conductance matrix does not change as long as the time step is constant.
|
|
// Factor stamping and LU decomposition of the conductance matrix
|
|
// outside of the simulation loop.
|
|
// Prevent copying of matrix.
|
|
conductances_.makeCompressed();
|
|
// LU factor conductances.
|
|
solver_.compute(conductances_);
|
|
|
|
for (size_t drvr_idx = 0; drvr_idx < dcalc_args.size(); drvr_idx++) {
|
|
ArcDcalcArg &dcalc_arg = dcalc_args[drvr_idx];
|
|
// Find initial ceff.
|
|
ceff_[drvr_idx] = load_cap_;
|
|
// voltageTime is always for a rising waveform so 0.0v is initial voltage.
|
|
drvr_current_[drvr_idx] =
|
|
output_waveforms_[drvr_idx]->voltageCurrent(dcalc_arg.inSlew(),
|
|
ceff_[drvr_idx], 0.0);
|
|
}
|
|
// Initial time depends on ceff which impact delay, so use a sim step
|
|
// to find an initial ceff.
|
|
setCurrents();
|
|
voltages_ = solver_.solve(currents_);
|
|
updateCeffIdrvr();
|
|
initNodeVoltages();
|
|
|
|
// voltageTime is always for a rising waveform so 0.0v is initial voltage.
|
|
double time_begin = output_waveforms_[0]->voltageTime(dcalc_args[0].inSlew(),
|
|
ceff_[0], 0.0);
|
|
// Limit in case load voltage waveforms don't get to final value.
|
|
double time_end = time_begin + maxTime();
|
|
|
|
if (make_waveforms_)
|
|
recordWaveformStep(time_begin);
|
|
|
|
for (double time = time_begin; time <= time_end; time += time_step_) {
|
|
stampConductances();
|
|
conductances_.makeCompressed();
|
|
solver_.compute(conductances_);
|
|
setCurrents();
|
|
voltages_ = solver_.solve(currents_);
|
|
|
|
debugPrint(debug_, "ccs_dcalc", 3, "%s ceff %s VDrvr %.4f Idrvr %s",
|
|
delayAsString(time, this),
|
|
units_->capacitanceUnit()->asString(ceff_[0]),
|
|
voltages_[pin_node_map_[dcalc_args[0].drvrPin()]],
|
|
units_->currentUnit()->asString(drvr_current_[0], 4));
|
|
|
|
updateCeffIdrvr();
|
|
measureThresholds(time);
|
|
if (make_waveforms_)
|
|
recordWaveformStep(time);
|
|
|
|
bool loads_finished = true;
|
|
for (auto load_node1 : pin_node_map_) {
|
|
size_t load_node = load_node1.second;
|
|
if ((drvr_rf_ == RiseFall::rise()
|
|
&& voltages_[load_node] < vh_ + (vdd_ - vh_) * .5)
|
|
|| (drvr_rf_ == RiseFall::fall()
|
|
&& (voltages_[load_node] > vl_ * .5))) {
|
|
loads_finished = false;
|
|
break;
|
|
}
|
|
}
|
|
if (loads_finished)
|
|
break;
|
|
|
|
time_step_prev_ = time_step_;
|
|
// swap faster than copying with '='.
|
|
voltages_prev2_.swap(voltages_prev1_);
|
|
voltages_prev1_.swap(voltages_);
|
|
}
|
|
}
|
|
|
|
double
|
|
CcsSimDelayCalc::timeStep()
|
|
{
|
|
// Needs to use LTE for time step dynamic control.
|
|
return drive_resistance_ * load_cap_ * .02;
|
|
}
|
|
|
|
double
|
|
CcsSimDelayCalc::maxTime()
|
|
{
|
|
return (*dcalc_args_)[0].inSlew()
|
|
+ (drive_resistance_ + resistance_sum_) * load_cap_ * 2;
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::initSim()
|
|
{
|
|
ceff_.resize(drvr_count_);
|
|
drvr_current_.resize(drvr_count_);
|
|
|
|
findNodeCount();
|
|
setOrder();
|
|
|
|
initNodeVoltages();
|
|
|
|
// time step required by initCapacitanceCurrents
|
|
time_step_ = time_step_prev_ = timeStep();
|
|
debugPrint(debug_, "ccs_dcalc", 1, "time step %s", delayAsString(time_step_, this));
|
|
|
|
// Reset waveform recording.
|
|
times_.clear();
|
|
drvr_voltages_.clear();
|
|
load_voltages_.clear();
|
|
|
|
measure_thresholds_ = {vl_, vth_, vh_};
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::findNodeCount()
|
|
{
|
|
includes_pin_caps_ = parasitics_->includesPinCaps(parasitic_network_);
|
|
coupling_cap_multiplier_ = 1.0;
|
|
|
|
node_capacitances_.clear();
|
|
pin_node_map_.clear();
|
|
node_index_map_.clear();
|
|
|
|
for (ParasiticNode *node : parasitics_->nodes(parasitic_network_)) {
|
|
if (!parasitics_->isExternal(node)) {
|
|
size_t node_idx = node_index_map_.size();
|
|
node_index_map_[node] = node_idx;
|
|
const Pin *pin = parasitics_->pin(node);
|
|
if (pin) {
|
|
pin_node_map_[pin] = node_idx;
|
|
debugPrint(debug_, "ccs_dcalc", 1, "pin %s node %lu",
|
|
network_->pathName(pin),
|
|
node_idx);
|
|
}
|
|
double cap = parasitics_->nodeGndCap(node) + pinCapacitance(node);
|
|
node_capacitances_.push_back(cap);
|
|
}
|
|
}
|
|
|
|
for (ParasiticCapacitor *capacitor : parasitics_->capacitors(parasitic_network_)) {
|
|
float cap = parasitics_->value(capacitor) * coupling_cap_multiplier_;
|
|
ParasiticNode *node1 = parasitics_->node1(capacitor);
|
|
if (!parasitics_->isExternal(node1)) {
|
|
size_t node_idx = node_index_map_[node1];
|
|
node_capacitances_[node_idx] += cap;
|
|
}
|
|
ParasiticNode *node2 = parasitics_->node2(capacitor);
|
|
if (!parasitics_->isExternal(node2)) {
|
|
size_t node_idx = node_index_map_[node2];
|
|
node_capacitances_[node_idx] += cap;
|
|
}
|
|
}
|
|
node_count_ = node_index_map_.size();
|
|
}
|
|
|
|
float
|
|
CcsSimDelayCalc::pinCapacitance(ParasiticNode *node)
|
|
{
|
|
const Pin *pin = parasitics_->pin(node);
|
|
float pin_cap = 0.0;
|
|
if (pin) {
|
|
Port *port = network_->port(pin);
|
|
LibertyPort *lib_port = network_->libertyPort(port);
|
|
const Corner *corner = dcalc_ap_->corner();
|
|
const MinMax *cnst_min_max = dcalc_ap_->constraintMinMax();
|
|
if (lib_port) {
|
|
if (!includes_pin_caps_)
|
|
pin_cap = sdc_->pinCapacitance(pin, drvr_rf_, corner, cnst_min_max);
|
|
}
|
|
else if (network_->isTopLevelPort(pin))
|
|
pin_cap = sdc_->portExtCap(port, drvr_rf_, corner, cnst_min_max);
|
|
}
|
|
return pin_cap;
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::setOrder()
|
|
{
|
|
currents_.resize(node_count_);
|
|
voltages_.resize(node_count_);
|
|
voltages_prev1_.resize(node_count_);
|
|
voltages_prev2_.resize(node_count_);
|
|
// Matrix resize also zeros.
|
|
conductances_.resize(node_count_, node_count_);
|
|
threshold_times_.resize(node_count_);
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::initNodeVoltages()
|
|
{
|
|
double drvr_init_volt = (drvr_rf_ == RiseFall::rise()) ? 0.0 : vdd_;
|
|
for (size_t i = 0; i < node_count_; i++) {
|
|
voltages_[i] = drvr_init_volt;
|
|
voltages_prev1_[i] = drvr_init_volt;
|
|
voltages_prev2_[i] = drvr_init_volt;
|
|
}
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::simulateStep()
|
|
{
|
|
setCurrents();
|
|
voltages_ = solver_.solve(currents_);
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::stampConductances()
|
|
{
|
|
conductances_.setZero();
|
|
for (size_t node_idx = 0; node_idx < node_count_; node_idx++)
|
|
stampCapacitance(node_idx, node_capacitances_[node_idx]);
|
|
|
|
resistance_sum_ = 0.0;
|
|
for (ParasiticResistor *resistor : parasitics_->resistors(parasitic_network_)) {
|
|
ParasiticNode *node1 = parasitics_->node1(resistor);
|
|
ParasiticNode *node2 = parasitics_->node2(resistor);
|
|
// One commercial extractor creates resistors with identical from/to nodes.
|
|
if (node1 != node2) {
|
|
size_t node_idx1 = node_index_map_[node1];
|
|
size_t node_idx2 = node_index_map_[node2];
|
|
float resistance = parasitics_->value(resistor);
|
|
stampConductance(node_idx1, node_idx2, 1.0 / resistance);
|
|
resistance_sum_ += resistance;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Grounded resistor.
|
|
void
|
|
CcsSimDelayCalc::stampConductance(size_t n1,
|
|
double g)
|
|
{
|
|
conductances_.coeffRef(n1, n1) += g;
|
|
}
|
|
|
|
// Floating resistor.
|
|
void
|
|
CcsSimDelayCalc::stampConductance(size_t n1,
|
|
size_t n2,
|
|
double g)
|
|
{
|
|
conductances_.coeffRef(n1, n1) += g;
|
|
conductances_.coeffRef(n2, n2) += g;
|
|
conductances_.coeffRef(n1, n2) -= g;
|
|
conductances_.coeffRef(n2, n1) -= g;
|
|
}
|
|
|
|
// Grounded capacitance.
|
|
void
|
|
CcsSimDelayCalc::stampCapacitance(size_t n1,
|
|
double cap)
|
|
{
|
|
double g = cap * 2.0 / time_step_;
|
|
stampConductance(n1, g);
|
|
}
|
|
|
|
// Floating capacitance.
|
|
void
|
|
CcsSimDelayCalc::stampCapacitance(size_t n1,
|
|
size_t n2,
|
|
double cap)
|
|
{
|
|
double g = cap * 2.0 / time_step_;
|
|
stampConductance(n1, n2, g);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
void
|
|
CcsSimDelayCalc::setCurrents()
|
|
{
|
|
currents_.setZero(node_count_);
|
|
for (size_t i = 0; i < drvr_count_; i++) {
|
|
size_t drvr_node = pin_node_map_[(*dcalc_args_)[i].drvrPin()];
|
|
insertCurrentSrc(drvr_node, drvr_current_[i]);
|
|
}
|
|
|
|
for (size_t node_idx = 0; node_idx < node_count_; node_idx++)
|
|
insertCapCurrentSrc(node_idx, node_capacitances_[node_idx]);
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::insertCapCurrentSrc(size_t n1,
|
|
double cap)
|
|
{
|
|
// Direct implementation of figure 4.11 in
|
|
// “Electronic Circuit & System Simulation Methods” allowing for time
|
|
// step changes.
|
|
// double g0 = 2.0 * cap / time_step_;
|
|
// double g1 = 2.0 * cap / time_step_prev_;
|
|
// double dv = voltages_prev2_[n1] - voltages_prev1_[n1];
|
|
// double ieq_prev = cap * dv / time_step_ + g0 * voltages_prev1_[n1];
|
|
// double i_cap = (g0 + g1) * voltages_prev1_[n1] - ieq_prev;
|
|
|
|
// Above simplified.
|
|
// double i_cap
|
|
// = cap / time_step_ * voltages_prev1_[n1]
|
|
// + 2.0 * cap / time_step_prev_ * voltages_prev1_[n1]
|
|
// - cap / time_step_ * voltages_prev2_[n1];
|
|
|
|
// Simplified for constant time step.
|
|
double i_cap
|
|
= 3.0 * cap / time_step_ * voltages_prev1_[n1]
|
|
- cap / time_step_ * voltages_prev2_[n1];
|
|
insertCurrentSrc(n1, i_cap);
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::insertCapaCurrentSrc(size_t n1,
|
|
size_t n2,
|
|
double cap)
|
|
{
|
|
double g0 = 2.0 * cap / time_step_;
|
|
double g1 = 2.0 * cap / time_step_prev_;
|
|
double dv = (voltages_prev2_[n1] - voltages_prev2_[n2])
|
|
- (voltages_prev1_[n1] - voltages_prev1_[n2]);
|
|
double ieq_prev = cap * dv / time_step_ + g0*(voltages_prev1_[n1]-voltages_prev1_[n2]);
|
|
double i_cap = (g0 + g1) * (voltages_prev1_[n1] - voltages_prev1_[n2]) - ieq_prev;
|
|
insertCurrentSrc(n1, n2, i_cap);
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::insertCurrentSrc(size_t n1,
|
|
double current)
|
|
{
|
|
currents_.coeffRef(n1) += current;
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::insertCurrentSrc(size_t n1,
|
|
size_t n2,
|
|
double current)
|
|
{
|
|
currents_.coeffRef(n1) += current;
|
|
currents_.coeffRef(n2) -= current;
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::updateCeffIdrvr()
|
|
{
|
|
for (size_t i = 0; i < drvr_count_; i++) {
|
|
size_t drvr_node = pin_node_map_[(*dcalc_args_)[i].drvrPin()];
|
|
double dv = voltages_[drvr_node] - voltages_prev1_[drvr_node];
|
|
if (drvr_rf_ == RiseFall::rise()) {
|
|
if (drvr_current_[i] != 0.0
|
|
&& dv > 0.0) {
|
|
double ceff = drvr_current_[i] * time_step_ / dv;
|
|
if (output_waveforms_[i]->capAxis()->inBounds(ceff))
|
|
ceff_[i] = ceff;
|
|
}
|
|
|
|
double v = voltages_[drvr_node];
|
|
if (voltages_[drvr_node] > (vdd_ - .01))
|
|
// Whoa partner. Head'n for the weeds.
|
|
drvr_current_[i] = 0.0;
|
|
else
|
|
drvr_current_[i] =
|
|
output_waveforms_[i]->voltageCurrent((*dcalc_args_)[i].inSlew(),
|
|
ceff_[i], v);
|
|
}
|
|
else {
|
|
if (drvr_current_[i] != 0.0
|
|
&& dv < 0.0) {
|
|
double ceff = drvr_current_[i] * time_step_ / dv;
|
|
if (output_waveforms_[i]->capAxis()->inBounds(ceff))
|
|
ceff_[i] = ceff;
|
|
}
|
|
double v = vdd_ - voltages_[drvr_node];
|
|
if (voltages_[drvr_node] < 0.01)
|
|
// Whoa partner. Head'n for the weeds.
|
|
drvr_current_[i] = 0.0;
|
|
else
|
|
drvr_current_[i] =
|
|
output_waveforms_[i]->voltageCurrent((*dcalc_args_)[i].inSlew(),
|
|
ceff_[i], v);
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
void
|
|
CcsSimDelayCalc::measureThresholds(double time)
|
|
{
|
|
for (auto pin_node1 : pin_node_map_) {
|
|
size_t pin_node = pin_node1.second;
|
|
measureThresholds(time, pin_node);
|
|
}
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::measureThresholds(double time,
|
|
size_t n)
|
|
{
|
|
double v = voltages_[n];
|
|
double v_prev = voltages_prev1_[n];
|
|
for (size_t m = 0; m < measure_threshold_count_; m++) {
|
|
double th = measure_thresholds_[m];
|
|
if ((v_prev < th && th <= v)
|
|
|| (v_prev > th && th >= v)) {
|
|
double t_cross = time - time_step_ + (th - v_prev) * time_step_ / (v - v_prev);
|
|
debugPrint(debug_, "ccs_measure", 1, "node %lu cross %.2f %s",
|
|
n,
|
|
th,
|
|
delayAsString(t_cross, this));
|
|
threshold_times_[n][m] = t_cross;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::recordWaveformStep(double time)
|
|
{
|
|
times_.push_back(time);
|
|
size_t drvr_node = pin_node_map_[waveform_drvr_pin_];
|
|
drvr_voltages_.push_back(voltages_[drvr_node]);
|
|
if (waveform_load_pin_) {
|
|
size_t load_node = pin_node_map_[waveform_load_pin_];
|
|
load_voltages_.push_back(voltages_[load_node]);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
string
|
|
CcsSimDelayCalc::reportGateDelay(const Pin *drvr_pin,
|
|
const TimingArc *arc,
|
|
const Slew &in_slew,
|
|
float load_cap,
|
|
const Parasitic *,
|
|
const LoadPinIndexMap &,
|
|
const DcalcAnalysisPt *dcalc_ap,
|
|
int digits)
|
|
{
|
|
GateTimingModel *model = gateModel(arc, dcalc_ap);
|
|
if (model) {
|
|
float in_slew1 = delayAsFloat(in_slew);
|
|
return model->reportGateDelay(pinPvt(drvr_pin, dcalc_ap), in_slew1, load_cap,
|
|
false, digits);
|
|
}
|
|
return "";
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
// Waveform accessors for swig/tcl.
|
|
Table1
|
|
CcsSimDelayCalc::drvrWaveform(const Pin *in_pin,
|
|
const RiseFall *in_rf,
|
|
const Pin *drvr_pin,
|
|
const RiseFall *drvr_rf,
|
|
const Corner *corner,
|
|
const MinMax *min_max)
|
|
{
|
|
makeWaveforms(in_pin, in_rf, drvr_pin, drvr_rf, nullptr, corner, min_max);
|
|
TableAxisPtr time_axis = make_shared<TableAxis>(TableAxisVariable::time,
|
|
new FloatSeq(times_));
|
|
Table1 waveform(new FloatSeq(drvr_voltages_), time_axis);
|
|
return waveform;
|
|
}
|
|
|
|
Table1
|
|
CcsSimDelayCalc::loadWaveform(const Pin *in_pin,
|
|
const RiseFall *in_rf,
|
|
const Pin *drvr_pin,
|
|
const RiseFall *drvr_rf,
|
|
const Pin *load_pin,
|
|
const Corner *corner,
|
|
const MinMax *min_max)
|
|
{
|
|
makeWaveforms(in_pin, in_rf, drvr_pin, drvr_rf, load_pin, corner, min_max);
|
|
TableAxisPtr time_axis = make_shared<TableAxis>(TableAxisVariable::time,
|
|
new FloatSeq(times_));
|
|
Table1 waveform(new FloatSeq(load_voltages_), time_axis);
|
|
return waveform;
|
|
}
|
|
|
|
Table1
|
|
CcsSimDelayCalc::inputWaveform(const Pin *in_pin,
|
|
const RiseFall *in_rf,
|
|
const Corner *corner,
|
|
const MinMax *min_max)
|
|
{
|
|
LibertyPort *port = network_->libertyPort(in_pin);
|
|
if (port) {
|
|
DriverWaveform *driver_waveform = port->driverWaveform(in_rf);
|
|
const Vertex *in_vertex = graph_->pinLoadVertex(in_pin);
|
|
DcalcAnalysisPt *dcalc_ap = corner->findDcalcAnalysisPt(min_max);
|
|
Slew in_slew = graph_->slew(in_vertex, in_rf, dcalc_ap->index());
|
|
LibertyLibrary *library = port->libertyLibrary();
|
|
float vdd;
|
|
bool vdd_exists;
|
|
library->supplyVoltage("VDD", vdd, vdd_exists);
|
|
if (!vdd_exists)
|
|
report_->error(1721, "VDD not defined in library %s", library->name());
|
|
Table1 in_waveform = driver_waveform->waveform(in_slew);
|
|
// Scale the waveform from 0:vdd.
|
|
FloatSeq *scaled_values = new FloatSeq;
|
|
for (float value : *in_waveform.values())
|
|
scaled_values->push_back(value * vdd);
|
|
return Table1(scaled_values, in_waveform.axis1ptr());
|
|
}
|
|
return Table1();
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::makeWaveforms(const Pin *in_pin,
|
|
const RiseFall *in_rf,
|
|
const Pin *drvr_pin,
|
|
const RiseFall *drvr_rf,
|
|
const Pin *load_pin,
|
|
const Corner *corner,
|
|
const MinMax *min_max)
|
|
{
|
|
Edge *edge;
|
|
const TimingArc *arc;
|
|
graph_->gateEdgeArc(in_pin, in_rf, drvr_pin, drvr_rf, edge, arc);
|
|
if (arc) {
|
|
DcalcAnalysisPt *dcalc_ap = corner->findDcalcAnalysisPt(min_max);
|
|
const Parasitic *parasitic = findParasitic(drvr_pin, drvr_rf, dcalc_ap);
|
|
if (parasitic) {
|
|
make_waveforms_ = true;
|
|
waveform_drvr_pin_ = drvr_pin;
|
|
waveform_load_pin_ = load_pin;
|
|
Vertex *drvr_vertex = graph_->pinDrvrVertex(drvr_pin);
|
|
graph_delay_calc_->findDriverArcDelays(drvr_vertex, edge, arc, dcalc_ap, this);
|
|
make_waveforms_ = false;
|
|
waveform_drvr_pin_ = nullptr;
|
|
waveform_load_pin_ = nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
void
|
|
CcsSimDelayCalc::reportMatrix(const char *name,
|
|
MatrixSd &matrix)
|
|
{
|
|
report_->reportLine("%s", name);
|
|
reportMatrix(matrix);
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::reportMatrix(const char *name,
|
|
MatrixXd &matrix)
|
|
{
|
|
report_->reportLine("%s", name);
|
|
reportMatrix(matrix);
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::reportMatrix(const char *name,
|
|
VectorXd &matrix)
|
|
{
|
|
report_->reportLine("%s", name);
|
|
reportMatrix(matrix);
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::reportVector(const char *name,
|
|
vector<double> &matrix)
|
|
{
|
|
report_->reportLine("%s", name);
|
|
reportVector(matrix);
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::reportMatrix(MatrixSd &matrix)
|
|
{
|
|
for (Index i = 0; i < matrix.rows(); i++) {
|
|
string line = "| ";
|
|
for (Index j = 0; j < matrix.cols(); j++) {
|
|
string entry = stdstrPrint("%10.3e", matrix.coeff(i, j));
|
|
line += entry;
|
|
line += " ";
|
|
}
|
|
line += "|";
|
|
report_->reportLineString(line);
|
|
}
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::reportMatrix(MatrixXd &matrix)
|
|
{
|
|
for (Index i = 0; i < matrix.rows(); i++) {
|
|
string line = "| ";
|
|
for (Index j = 0; j < matrix.cols(); j++) {
|
|
string entry = stdstrPrint("%10.3e", matrix.coeff(i, j));
|
|
line += entry;
|
|
line += " ";
|
|
}
|
|
line += "|";
|
|
report_->reportLineString(line);
|
|
}
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::reportMatrix(VectorXd &matrix)
|
|
{
|
|
string line = "| ";
|
|
for (Index i = 0; i < matrix.rows(); i++) {
|
|
string entry = stdstrPrint("%10.3e", matrix.coeff(i));
|
|
line += entry;
|
|
line += " ";
|
|
}
|
|
line += "|";
|
|
report_->reportLineString(line);
|
|
}
|
|
|
|
void
|
|
CcsSimDelayCalc::reportVector(vector<double> &matrix)
|
|
{
|
|
string line = "| ";
|
|
for (size_t i = 0; i < matrix.size(); i++) {
|
|
string entry = stdstrPrint("%10.3e", matrix[i]);
|
|
line += entry;
|
|
line += " ";
|
|
}
|
|
line += "|";
|
|
report_->reportLineString(line);
|
|
}
|
|
|
|
} // namespace
|