OpenSTA/search/CheckFanoutLimits.cc

333 lines
9.2 KiB
C++

// OpenSTA, Static Timing Analyzer
// Copyright (c) 2025, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software.
//
// Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
//
// This notice may not be removed or altered from any source distribution.
#include "CheckFanoutLimits.hh"
#include "Fuzzy.hh"
#include "Liberty.hh"
#include "Network.hh"
#include "Sdc.hh"
#include "InputDrive.hh"
#include "Sim.hh"
#include "PortDirection.hh"
#include "Graph.hh"
#include "Search.hh"
namespace sta {
class PinFanoutLimitSlackLess
{
public:
PinFanoutLimitSlackLess(const MinMax *min_max,
CheckFanoutLimits *check_fanout_limit,
const StaState *sta);
bool operator()(const Pin *pin1,
const Pin *pin2) const;
private:
const MinMax *min_max_;
CheckFanoutLimits *check_fanout_limit_;
const StaState *sta_;
};
PinFanoutLimitSlackLess::PinFanoutLimitSlackLess(const MinMax *min_max,
CheckFanoutLimits *check_fanout_limit,
const StaState *sta) :
min_max_(min_max),
check_fanout_limit_(check_fanout_limit),
sta_(sta)
{
}
bool
PinFanoutLimitSlackLess::operator()(const Pin *pin1,
const Pin *pin2) const
{
float fanout1, fanout2;
float limit1, limit2, slack1, slack2;
check_fanout_limit_->checkFanout(pin1, min_max_,
fanout1, limit1, slack1);
check_fanout_limit_->checkFanout(pin2, min_max_,
fanout2, limit2, slack2);
return fuzzyLess(slack1, slack2)
|| (fuzzyEqual(slack1, slack2)
// Break ties for the sake of regression stability.
&& sta_->network()->pinLess(pin1, pin2));
}
////////////////////////////////////////////////////////////////
CheckFanoutLimits::CheckFanoutLimits(const Sta *sta) :
sta_(sta)
{
}
void
CheckFanoutLimits::checkFanout(const Pin *pin,
const MinMax *min_max,
// Return values.
float &fanout,
float &limit,
float &slack) const
{
fanout = 0.0;
limit = min_max->initValue();
slack = MinMax::min()->initValue();
float limit1;
bool limit1_exists;
findLimit(pin, min_max, limit1, limit1_exists);
if (limit1_exists)
checkFanout(pin, min_max, limit1,
fanout, limit, slack);
}
// return the tightest limit.
void
CheckFanoutLimits::findLimit(const Pin *pin,
const MinMax *min_max,
// Return values.
float &limit,
bool &exists) const
{
const Network *network = sta_->network();
Sdc *sdc = sta_->sdc();
limit = min_max->initValue();
exists = false;
// Default to top ("design") limit.
// Applies to input ports as well as instance outputs.
Cell *top_cell = network->cell(network->topInstance());
sdc->fanoutLimit(top_cell, min_max,
limit, exists);
float limit1;
bool exists1;
if (network->isTopLevelPort(pin)) {
Port *port = network->port(pin);
sdc->fanoutLimit(port, min_max, limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
InputDrive *drive = sdc->findInputDrive(port);
if (drive) {
for (auto rf : RiseFall::range()) {
const LibertyCell *cell;
const LibertyPort *from_port;
float *from_slews;
const LibertyPort *to_port;
drive->driveCell(rf, min_max, cell, from_port, from_slews, to_port);
if (to_port) {
to_port->fanoutLimit(min_max, limit1, exists1);
if (!exists1
&& min_max == MinMax::max()
&& to_port->direction()->isAnyOutput())
to_port->libertyLibrary()->defaultMaxFanout(limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
}
}
}
}
else {
Cell *cell = network->cell(network->instance(pin));
sdc->fanoutLimit(cell, min_max,
limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
LibertyPort *port = network->libertyPort(pin);
if (port) {
port->fanoutLimit(min_max, limit1, exists1);
if (!exists1
&& min_max == MinMax::max()
&& port->direction()->isAnyOutput())
port->libertyLibrary()->defaultMaxFanout(limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
}
}
}
void
CheckFanoutLimits::checkFanout(const Pin *pin,
const MinMax *min_max,
float limit1,
// Return values.
float &fanout,
float &limit,
float &slack) const
{
float fanout1 = fanoutLoad(pin);
float slack1 = (min_max == MinMax::max())
? limit1 - fanout1
: fanout1 - limit1;
if (fuzzyLessEqual(slack1, slack)) {
fanout = fanout1;
slack = slack1;
limit = limit1;
}
}
float
CheckFanoutLimits::fanoutLoad(const Pin *pin) const
{
float fanout = 0;
const Network *network = sta_->network();
NetConnectedPinIterator *pin_iter = network->connectedPinIterator(pin);
while (pin_iter->hasNext()) {
const Pin *fanout_pin = pin_iter->next();
if (network->isLoad(fanout_pin)
&& !network->isTopLevelPort(fanout_pin)) {
LibertyPort *port = network->libertyPort(fanout_pin);
if (port) {
float fanout_load;
bool exists;
port->fanoutLoad(fanout_load, exists);
if (!exists) {
LibertyLibrary *lib = port->libertyLibrary();
lib->defaultFanoutLoad(fanout_load, exists);
}
if (exists)
fanout += fanout_load;
}
else
fanout += 1;
}
}
delete pin_iter;
return fanout;
}
////////////////////////////////////////////////////////////////
PinSeq
CheckFanoutLimits::checkFanoutLimits(const Net *net,
bool violators,
const MinMax *min_max)
{
const Network *network = sta_->network();
PinSeq fanout_pins;
float min_slack = MinMax::min()->initValue();
if (net) {
NetPinIterator *pin_iter = network->pinIterator(net);
while (pin_iter->hasNext()) {
const Pin *pin = pin_iter->next();
checkFanoutLimits(pin, violators, min_max, fanout_pins, min_slack);
}
delete pin_iter;
}
else {
LeafInstanceIterator *inst_iter = network->leafInstanceIterator();
while (inst_iter->hasNext()) {
const Instance *inst = inst_iter->next();
checkFanoutLimits(inst, violators, min_max, fanout_pins, min_slack);
}
delete inst_iter;
// Check top level ports.
checkFanoutLimits(network->topInstance(), violators, min_max,
fanout_pins, min_slack);
}
sort(fanout_pins, PinFanoutLimitSlackLess(min_max, this, sta_));
// Keep the min slack pin unless all violators or net pins.
if (!fanout_pins.empty() && !violators && net == nullptr)
fanout_pins.resize(1);
return fanout_pins;
}
void
CheckFanoutLimits::checkFanoutLimits(const Instance *inst,
bool violators,
const MinMax *min_max,
PinSeq &fanout_pins,
float &min_slack)
{
const Network *network = sta_->network();
InstancePinIterator *pin_iter = network->pinIterator(inst);
while (pin_iter->hasNext()) {
const Pin *pin = pin_iter->next();
checkFanoutLimits(pin, violators, min_max, fanout_pins, min_slack);
}
delete pin_iter;
}
void
CheckFanoutLimits::checkFanoutLimits(const Pin *pin,
bool violators,
const MinMax *min_max,
PinSeq &fanout_pins,
float &min_slack)
{
if (checkPin(pin)) {
float fanout;
float limit, slack;
checkFanout(pin, min_max, fanout, limit, slack);
if (!fuzzyInf(slack)) {
if (violators) {
if (slack < 0.0)
fanout_pins.push_back(pin);
}
else {
if (fanout_pins.empty()
|| slack < min_slack) {
fanout_pins.push_back(pin);
min_slack = slack;
}
}
}
}
}
bool
CheckFanoutLimits::checkPin(const Pin *pin)
{
const Network *network = sta_->network();
const Sim *sim = sta_->sim();
const Sdc *sdc = sta_->sdc();
const Graph *graph = sta_->graph();
Vertex *vertex = graph->pinDrvrVertex(pin);
return network->isDriver(pin)
&& !sim->logicZeroOne(pin)
&& !sdc->isDisabled(pin)
&& !(vertex && sta_->isIdealClock(pin));
}
} // namespace