OpenSTA/graph/DelayFloat.cc

192 lines
3.8 KiB
C++

// OpenSTA, Static Timing Analyzer
// Copyright (c) 2024, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include "Delay.hh"
#include "StaConfig.hh"
#include "Fuzzy.hh"
#include "Units.hh"
#include "StaState.hh"
// Non-SSTA compilation.
#if !SSTA
namespace sta {
static Delay delay_init_values[MinMax::index_count];
void
initDelayConstants()
{
delay_init_values[MinMax::minIndex()] = MinMax::min()->initValue();
delay_init_values[MinMax::maxIndex()] = MinMax::max()->initValue();
}
const char *
delayAsString(const Delay &delay,
const StaState *sta)
{
return delayAsString(delay, sta, sta->units()->timeUnit()->digits());
}
const char *
delayAsString(const Delay &delay,
const StaState *sta,
int digits)
{
return sta->units()->timeUnit()->asString(delay, digits);
}
const char *
delayAsString(const Delay &delay,
const EarlyLate *,
const StaState *sta,
int digits)
{
const Unit *unit = sta->units()->timeUnit();
return unit->asString(delay, digits);
}
const Delay &
delayInitValue(const MinMax *min_max)
{
return delay_init_values[min_max->index()];
}
bool
delayIsInitValue(const Delay &delay,
const MinMax *min_max)
{
return fuzzyEqual(delay, min_max->initValue());
}
bool
delayZero(const Delay &delay)
{
return fuzzyZero(delay);
}
bool
delayInf(const Delay &delay)
{
return fuzzyInf(delay);
}
bool
delayEqual(const Delay &delay1,
const Delay &delay2)
{
return fuzzyEqual(delay1, delay2);
}
bool
delayLess(const Delay &delay1,
const Delay &delay2,
const StaState *)
{
return fuzzyLess(delay1, delay2);
}
bool
delayLess(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max,
const StaState *)
{
if (min_max == MinMax::max())
return fuzzyLess(delay1, delay2);
else
return fuzzyGreater(delay1, delay2);
}
bool
delayLessEqual(const Delay &delay1,
const Delay &delay2,
const StaState *)
{
return fuzzyLessEqual(delay1, delay2);
}
bool
delayLessEqual(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max,
const StaState *)
{
if (min_max == MinMax::max())
return fuzzyLessEqual(delay1, delay2);
else
return fuzzyGreaterEqual(delay1, delay2);
}
bool
delayGreater(const Delay &delay1,
const Delay &delay2,
const StaState *)
{
return fuzzyGreater(delay1, delay2);
}
bool
delayGreater(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max,
const StaState *)
{
if (min_max == MinMax::max())
return fuzzyGreater(delay1, delay2);
else
return fuzzyLess(delay1, delay2);
}
bool
delayGreaterEqual(const Delay &delay1,
const Delay &delay2,
const StaState *)
{
return fuzzyGreaterEqual(delay1, delay2);
}
bool
delayGreaterEqual(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max,
const StaState *)
{
if (min_max == MinMax::max())
return fuzzyGreaterEqual(delay1, delay2);
else
return fuzzyLessEqual(delay1, delay2);
}
Delay
delayRemove(const Delay &delay1,
const Delay &delay2)
{
return delay1 - delay2;
}
float
delayRatio(const Delay &delay1,
const Delay &delay2)
{
return delay1 / delay2;
}
} // namespace
#endif // !SSTA