OpenSTA/search/CheckFanoutLimits.cc

302 lines
7.6 KiB
C++

// OpenSTA, Static Timing Analyzer
// Copyright (c) 2020, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include "CheckFanoutLimits.hh"
#include "Fuzzy.hh"
#include "Liberty.hh"
#include "Network.hh"
#include "Sdc.hh"
#include "Sim.hh"
#include "PortDirection.hh"
#include "Graph.hh"
#include "Search.hh"
namespace sta {
class PinFanoutLimitSlackLess
{
public:
PinFanoutLimitSlackLess(const MinMax *min_max,
CheckFanoutLimits *check_fanout_limit,
const StaState *sta);
bool operator()(Pin *pin1,
Pin *pin2) const;
private:
const MinMax *min_max_;
CheckFanoutLimits *check_fanout_limit_;
const StaState *sta_;
};
PinFanoutLimitSlackLess::PinFanoutLimitSlackLess(const MinMax *min_max,
CheckFanoutLimits *check_fanout_limit,
const StaState *sta) :
min_max_(min_max),
check_fanout_limit_(check_fanout_limit),
sta_(sta)
{
}
bool
PinFanoutLimitSlackLess::operator()(Pin *pin1,
Pin *pin2) const
{
float fanout1, fanout2;
float limit1, limit2, slack1, slack2;
check_fanout_limit_->checkFanout(pin1, min_max_,
fanout1, limit1, slack1);
check_fanout_limit_->checkFanout(pin2, min_max_,
fanout2, limit2, slack2);
return fuzzyLess(slack1, slack2)
|| (fuzzyEqual(slack1, slack2)
// Break ties for the sake of regression stability.
&& sta_->network()->pinLess(pin1, pin2));
}
////////////////////////////////////////////////////////////////
CheckFanoutLimits::CheckFanoutLimits(const Sta *sta) :
sta_(sta)
{
}
void
CheckFanoutLimits::checkFanout(const Pin *pin,
const MinMax *min_max,
// Return values.
float &fanout,
float &limit,
float &slack) const
{
fanout = 0.0;
limit = 0.0;
slack = MinMax::min()->initValue();
float limit1;
bool limit1_exists;
findLimit(pin, min_max, limit1, limit1_exists);
if (limit1_exists)
checkFanout(pin, min_max, limit1,
fanout, slack, limit);
}
// return the tightest limit.
void
CheckFanoutLimits::findLimit(const Pin *pin,
const MinMax *min_max,
// Return values.
float &limit,
bool &exists) const
{
const Network *network = sta_->network();
Sdc *sdc = sta_->sdc();
// Default to top ("design") limit.
Cell *top_cell = network->cell(network->topInstance());
sdc->fanoutLimit(top_cell, min_max,
limit, exists);
float limit1;
bool exists1;
if (network->isTopLevelPort(pin)) {
Port *port = network->port(pin);
sdc->fanoutLimit(port, min_max, limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
}
else {
Cell *cell = network->cell(network->instance(pin));
sdc->fanoutLimit(cell, min_max,
limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
LibertyPort *port = network->libertyPort(pin);
if (port) {
port->fanoutLimit(min_max, limit1, exists1);
if (!exists1
&& min_max == MinMax::max()
&& port->direction()->isAnyOutput())
port->libertyLibrary()->defaultMaxFanout(limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
}
}
}
void
CheckFanoutLimits::checkFanout(const Pin *pin,
const MinMax *min_max,
float limit1,
// Return values.
float &fanout,
float &slack,
float &limit) const
{
float fanout1 = fanoutLoad(pin);
float slack1 = (min_max == MinMax::max())
? limit1 - fanout1
: fanout1 - limit1;
if (fuzzyLessEqual(slack1, slack)) {
fanout = fanout1;
slack = slack1;
limit = limit1;
}
}
float
CheckFanoutLimits::fanoutLoad(const Pin *pin) const
{
float fanout = 0;
const Network *network = sta_->network();
Net *net = network->net(pin);
if (net) {
NetPinIterator *pin_iter = network->pinIterator(net);
while (pin_iter->hasNext()) {
Pin *pin = pin_iter->next();
if (network->isLoad(pin)) {
LibertyPort *port = network->libertyPort(pin);
if (port) {
float fanout_load;
bool exists;
port->fanoutLoad(fanout_load, exists);
if (!exists) {
LibertyLibrary *lib = port->libertyLibrary();
lib->defaultFanoutLoad(fanout_load, exists);
}
if (exists)
fanout += fanout_load;
}
else
fanout += 1;
}
}
delete pin_iter;
}
return fanout;
}
PinSeq *
CheckFanoutLimits::pinFanoutLimitViolations(const MinMax *min_max)
{
const Network *network = sta_->network();
PinSeq *violators = new PinSeq;
LeafInstanceIterator *inst_iter = network->leafInstanceIterator();
while (inst_iter->hasNext()) {
Instance *inst = inst_iter->next();
pinFanoutLimitViolations(inst, min_max, violators);
}
delete inst_iter;
// Check top level ports.
pinFanoutLimitViolations(network->topInstance(), min_max, violators);
sort(violators, PinFanoutLimitSlackLess(min_max, this, sta_));
return violators;
}
void
CheckFanoutLimits::pinFanoutLimitViolations(Instance *inst,
const MinMax *min_max,
PinSeq *violators)
{
const Network *network = sta_->network();
InstancePinIterator *pin_iter = network->pinIterator(inst);
while (pin_iter->hasNext()) {
Pin *pin = pin_iter->next();
if (checkPin(pin)) {
float fanout;
float limit, slack;
checkFanout(pin, min_max, fanout, limit, slack );
if (slack < 0.0 && !fuzzyInf(slack))
violators->push_back(pin);
}
}
delete pin_iter;
}
Pin *
CheckFanoutLimits::pinMinFanoutLimitSlack(const MinMax *min_max)
{
const Network *network = sta_->network();
Pin *min_slack_pin = nullptr;
float min_slack = MinMax::min()->initValue();
LeafInstanceIterator *inst_iter = network->leafInstanceIterator();
while (inst_iter->hasNext()) {
Instance *inst = inst_iter->next();
pinMinFanoutLimitSlack(inst, min_max, min_slack_pin, min_slack);
}
delete inst_iter;
// Check top level ports.
pinMinFanoutLimitSlack(network->topInstance(), min_max,
min_slack_pin, min_slack);
return min_slack_pin;
}
void
CheckFanoutLimits::pinMinFanoutLimitSlack(Instance *inst,
const MinMax *min_max,
// Return values.
Pin *&min_slack_pin,
float &min_slack)
{
const Network *network = sta_->network();
InstancePinIterator *pin_iter = network->pinIterator(inst);
while (pin_iter->hasNext()) {
Pin *pin = pin_iter->next();
if (checkPin(pin)) {
float fanout;
float limit, slack;
checkFanout(pin, min_max, fanout, limit, slack);
if (!fuzzyInf(slack)
&& (min_slack_pin == nullptr
|| slack < min_slack)) {
min_slack_pin = pin;
min_slack = slack;
}
}
}
delete pin_iter;
}
bool
CheckFanoutLimits::checkPin(Pin *pin)
{
const Network *network = sta_->network();
const Sim *sim = sta_->sim();
const Sdc *sdc = sta_->sdc();
const Graph *graph = sta_->graph();
Vertex *vertex = graph->pinLoadVertex(pin);
return network->direction(pin)->isAnyOutput()
&& !sim->logicZeroOne(pin)
&& !sdc->isDisabled(pin)
&& !(vertex && sta_->isIdealClock(pin));
}
} // namespace