OpenSTA/search/CheckCapacitanceLimits.cc

327 lines
8.9 KiB
C++

// OpenSTA, Static Timing Analyzer
// Copyright (c) 2020, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include "CheckCapacitanceLimits.hh"
#include "Fuzzy.hh"
#include "Liberty.hh"
#include "Network.hh"
#include "Sdc.hh"
#include "DcalcAnalysisPt.hh"
#include "GraphDelayCalc.hh"
#include "StaState.hh"
#include "Corner.hh"
#include "PortDirection.hh"
#include "Sim.hh"
#include "Graph.hh"
#include "GraphDelayCalc.hh"
namespace sta {
class PinCapacitanceLimitSlackLess
{
public:
PinCapacitanceLimitSlackLess(const Corner *corner,
const MinMax *min_max,
CheckCapacitanceLimits *check_capacitance_limit,
const StaState *sta);
bool operator()(Pin *pin1,
Pin *pin2) const;
private:
const Corner *corner_;
const MinMax *min_max_;
CheckCapacitanceLimits *check_capacitance_limit_;
const StaState *sta_;
};
PinCapacitanceLimitSlackLess::PinCapacitanceLimitSlackLess(const Corner *corner,
const MinMax *min_max,
CheckCapacitanceLimits *check_capacitance_limit,
const StaState *sta) :
corner_(corner),
min_max_(min_max),
check_capacitance_limit_(check_capacitance_limit),
sta_(sta)
{
}
bool
PinCapacitanceLimitSlackLess::operator()(Pin *pin1,
Pin *pin2) const
{
const Corner *corner1, *corner2;
const RiseFall *rf1, *rf2;
float capacitance1, capacitance2;
float limit1, limit2, slack1, slack2;
check_capacitance_limit_->checkCapacitance(pin1, corner_, min_max_,
corner1, rf1, capacitance1,
limit1, slack1);
check_capacitance_limit_->checkCapacitance(pin2, corner_, min_max_,
corner2, rf2, capacitance2,
limit2, slack2);
return fuzzyLess(slack1, slack2)
|| (fuzzyEqual(slack1, slack2)
// Break ties for the sake of regression stability.
&& sta_->network()->pinLess(pin1, pin2));
}
////////////////////////////////////////////////////////////////
CheckCapacitanceLimits::CheckCapacitanceLimits(const Sta *sta) :
sta_(sta)
{
}
void
CheckCapacitanceLimits::checkCapacitance(const Pin *pin,
const Corner *corner1,
const MinMax *min_max,
// Return values.
const Corner *&corner,
const RiseFall *&rf,
float &capacitance,
float &limit,
float &slack) const
{
corner = nullptr;
rf = nullptr;
capacitance = 0.0;
limit = 0.0;
slack = MinMax::min()->initValue();
if (corner1)
checkCapacitance1(pin, corner1, min_max,
corner, rf, capacitance, limit, slack);
else {
for (auto corner1 : *sta_->corners()) {
checkCapacitance1(pin, corner1, min_max,
corner, rf, capacitance, limit, slack);
}
}
}
void
CheckCapacitanceLimits::checkCapacitance1(const Pin *pin,
const Corner *corner1,
const MinMax *min_max,
// Return values.
const Corner *&corner,
const RiseFall *&rf,
float &capacitance,
float &limit,
float &slack) const
{
float limit1;
bool limit1_exists;
findLimit(pin, min_max, limit1, limit1_exists);
if (limit1_exists) {
for (auto rf1 : RiseFall::range()) {
checkCapacitance(pin, corner1, min_max, rf1, limit1,
corner, rf, capacitance, slack, limit);
}
}
}
// return the tightest limit.
void
CheckCapacitanceLimits::findLimit(const Pin *pin,
const MinMax *min_max,
// Return values.
float &limit,
bool &exists) const
{
const Network *network = sta_->network();
Sdc *sdc = sta_->sdc();
// Default to top ("design") limit.
Cell *top_cell = network->cell(network->topInstance());
sdc->capacitanceLimit(top_cell, min_max,
limit, exists);
float limit1;
bool exists1;
if (network->isTopLevelPort(pin)) {
Port *port = network->port(pin);
sdc->capacitanceLimit(port, min_max, limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
}
else {
Cell *cell = network->cell(network->instance(pin));
sdc->capacitanceLimit(cell, min_max,
limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
LibertyPort *port = network->libertyPort(pin);
if (port) {
port->capacitanceLimit(min_max, limit1, exists1);
if (!exists1
&& port->direction()->isAnyOutput())
port->libertyLibrary()->defaultMaxCapacitance(limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
}
}
}
void
CheckCapacitanceLimits::checkCapacitance(const Pin *pin,
const Corner *corner1,
const MinMax *min_max,
const RiseFall *rf1,
float limit1,
// Return values.
const Corner *&corner,
const RiseFall *&rf,
float &capacitance,
float &slack,
float &limit) const
{
const DcalcAnalysisPt *dcalc_ap = corner1->findDcalcAnalysisPt(min_max);
GraphDelayCalc *dcalc = sta_->graphDelayCalc();
float cap = dcalc->loadCap(pin, dcalc_ap);
float slack1 = (min_max == MinMax::max())
? limit1 - cap : cap - limit1;
if (slack1 < slack
// Break ties for the sake of regression stability.
|| (fuzzyEqual(slack1, slack)
&& rf1->index() < rf->index())) {
corner = corner1;
rf = rf1;
capacitance = cap;
slack = slack1;
limit = limit1;
}
}
PinSeq *
CheckCapacitanceLimits::pinCapacitanceLimitViolations(const Corner *corner,
const MinMax *min_max)
{
const Network *network = sta_->network();
PinSeq *violators = new PinSeq;
LeafInstanceIterator *inst_iter = network->leafInstanceIterator();
while (inst_iter->hasNext()) {
Instance *inst = inst_iter->next();
pinCapacitanceLimitViolations(inst, corner, min_max, violators);
}
delete inst_iter;
// Check top level ports.
pinCapacitanceLimitViolations(network->topInstance(), corner, min_max, violators);
sort(violators, PinCapacitanceLimitSlackLess(corner, min_max, this, sta_));
return violators;
}
void
CheckCapacitanceLimits::pinCapacitanceLimitViolations(Instance *inst,
const Corner *corner,
const MinMax *min_max,
PinSeq *violators)
{
const Network *network = sta_->network();
InstancePinIterator *pin_iter = network->pinIterator(inst);
while (pin_iter->hasNext()) {
Pin *pin = pin_iter->next();
if (checkPin(pin)) {
const Corner *corner1;
const RiseFall *rf;
float capacitance, limit, slack;
checkCapacitance(pin, corner, min_max, corner1, rf, capacitance, limit, slack );
if (rf && slack < 0.0 && !fuzzyInf(slack))
violators->push_back(pin);
}
}
delete pin_iter;
}
Pin *
CheckCapacitanceLimits::pinMinCapacitanceLimitSlack(const Corner *corner,
const MinMax *min_max)
{
const Network *network = sta_->network();
Pin *min_slack_pin = nullptr;
float min_slack = MinMax::min()->initValue();
LeafInstanceIterator *inst_iter = network->leafInstanceIterator();
while (inst_iter->hasNext()) {
Instance *inst = inst_iter->next();
pinMinCapacitanceLimitSlack(inst, corner, min_max, min_slack_pin, min_slack);
}
delete inst_iter;
// Check top level ports.
pinMinCapacitanceLimitSlack(network->topInstance(), corner, min_max,
min_slack_pin, min_slack);
return min_slack_pin;
}
void
CheckCapacitanceLimits::pinMinCapacitanceLimitSlack(Instance *inst,
const Corner *corner,
const MinMax *min_max,
// Return values.
Pin *&min_slack_pin,
float &min_slack)
{
const Network *network = sta_->network();
InstancePinIterator *pin_iter = network->pinIterator(inst);
while (pin_iter->hasNext()) {
Pin *pin = pin_iter->next();
if (checkPin(pin)) {
const Corner *corner1;
const RiseFall *rf;
float capacitance, limit, slack;
checkCapacitance(pin, corner, min_max, corner1, rf, capacitance, limit, slack);
if (rf
&& !fuzzyInf(slack)
&& (min_slack_pin == nullptr
|| slack < min_slack)) {
min_slack_pin = pin;
min_slack = slack;
}
}
}
delete pin_iter;
}
bool
CheckCapacitanceLimits::checkPin(Pin *pin)
{
const Network *network = sta_->network();
const Sim *sim = sta_->sim();
const Sdc *sdc = sta_->sdc();
const Graph *graph = sta_->graph();
Vertex *vertex = graph->pinLoadVertex(pin);
return network->direction(pin)->isAnyOutput()
&& !sim->logicZeroOne(pin)
&& !sdc->isDisabled(pin)
&& !(vertex && sta_->isIdealClock(pin));
}
} // namespace