OpenSTA/search/GatedClk.cc

266 lines
7.5 KiB
C++

// OpenSTA, Static Timing Analyzer
// Copyright (c) 2025, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software.
//
// Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
//
// This notice may not be removed or altered from any source distribution.
#include "GatedClk.hh"
#include "FuncExpr.hh"
#include "Liberty.hh"
#include "PortDirection.hh"
#include "Network.hh"
#include "Graph.hh"
#include "Sdc.hh"
#include "Search.hh"
namespace sta {
GatedClk::GatedClk(const StaState *sta) :
StaState(sta)
{
}
bool
GatedClk::isGatedClkEnable(Vertex *vertex) const
{
bool is_gated_clk_enable;
const Pin *clk_pin;
LogicValue logic_active_value;
isGatedClkEnable(vertex,
is_gated_clk_enable, clk_pin, logic_active_value);
return is_gated_clk_enable;
}
void
GatedClk::isGatedClkEnable(Vertex *enable_vertex,
bool &is_gated_clk_enable,
const Pin *&clk_pin,
LogicValue &logic_active_value) const
{
is_gated_clk_enable = false;
const Pin *enable_pin = enable_vertex->pin();
const Instance *inst = network_->instance(enable_pin);
LibertyPort *enable_port = network_->libertyPort(enable_pin);
EvalPred *eval_pred = search_->evalPred();
if (enable_port
&& enable_port->direction()->isInput()
&& !sdc_->isDisableClockGatingCheck(enable_pin)
&& !sdc_->isDisableClockGatingCheck(inst)
&& eval_pred->searchFrom(enable_vertex)) {
FuncExpr *func = nullptr;
Vertex *gclk_vertex = nullptr;
VertexOutEdgeIterator edge_iter(enable_vertex, graph_);
while (edge_iter.hasNext()) {
Edge *edge = edge_iter.next();
gclk_vertex = edge->to(graph_);
if (edge->role() == TimingRole::combinational()
&& eval_pred->searchTo(gclk_vertex)
&& eval_pred->searchThru(edge)) {
const Pin *gclk_pin = gclk_vertex->pin();
LibertyPort *gclk_port = network_->libertyPort(gclk_pin);
if (gclk_port) {
func = gclk_port->function();
if (func)
break;
}
}
}
if (func
&& search_->isClock(gclk_vertex)
&& !search_->isClock(enable_vertex)) {
FuncExprPortIterator clk_port_iter(func);
while (clk_port_iter.hasNext()) {
LibertyPort *clk_port = clk_port_iter.next();
if (clk_port != enable_port) {
bool is_clk_gate = false;
isClkGatingFunc(func, enable_port, clk_port,
is_clk_gate, logic_active_value);
if (is_clk_gate) {
clk_pin = network_->findPin(inst, clk_port);
if (clk_pin
&& !sdc_->isDisableClockGatingCheck(clk_pin)
&& search_->isClock(graph_->pinLoadVertex(clk_pin))) {
is_gated_clk_enable = true;
break;
}
}
}
}
}
}
}
void
GatedClk::gatedClkEnables(Vertex *clk_vertex,
// Return value.
PinSet &enable_pins)
{
const Pin *clk_pin = clk_vertex->pin();
const Instance *inst = network_->instance(clk_pin);
LibertyPort *clk_port = network_->libertyPort(clk_pin);
EvalPred *eval_pred = search_->evalPred();
if (clk_port
&& !sdc_->isDisableClockGatingCheck(clk_pin)
&& !sdc_->isDisableClockGatingCheck(inst)
&& eval_pred->searchFrom(clk_vertex)) {
FuncExpr *func = nullptr;
Vertex *gclk_vertex = nullptr;
VertexOutEdgeIterator edge_iter(clk_vertex, graph_);
while (edge_iter.hasNext()) {
Edge *edge = edge_iter.next();
gclk_vertex = edge->to(graph_);
if (edge->role() == TimingRole::combinational()
&& eval_pred->searchTo(gclk_vertex)
&& eval_pred->searchThru(edge)) {
const Pin *gclk_pin = gclk_vertex->pin();
LibertyPort *gclk_port = network_->libertyPort(gclk_pin);
if (gclk_port) {
func = gclk_port->function();
if (func) {
if (search_->isClock(gclk_vertex)) {
FuncExprPortIterator enable_port_iter(func);
while (enable_port_iter.hasNext()) {
LibertyPort *enable_port = enable_port_iter.next();
if (enable_port != clk_port) {
bool is_clk_gate;
LogicValue logic_value;
isClkGatingFunc(func, enable_port, clk_port,
is_clk_gate, logic_value);
if (is_clk_gate) {
Pin *enable_pin = network_->findPin(inst, enable_port);
if (enable_pin
&& !sdc_->isDisableClockGatingCheck(enable_pin)
&& !search_->isClock(graph_->pinLoadVertex(enable_pin))) {
enable_pins.insert(enable_pin);
}
}
}
}
}
break;
}
}
}
}
}
}
void
GatedClk::isClkGatingFunc(FuncExpr *func,
LibertyPort *enable_port,
LibertyPort *clk_port,
bool &is_clk_gate,
LogicValue &logic_value) const
{
// The function should be in two-level SOP or POS form depending on "cost".
// We need to apply literal cofactor if any input port is constant and
// do "simple" logic minimization based on SOP and POS.
while (func->op() == FuncExpr::op_not)
func = func->left();
if (func->op() == FuncExpr::op_and)
logic_value = LogicValue::one;
else if (func->op() == FuncExpr::op_or)
logic_value = LogicValue::zero;
else {
is_clk_gate = false;
return;
}
FuncExprSet funcs;
functionClkOperands(func, func->left(), funcs);
functionClkOperands(func, func->right(), funcs);
bool need_gating_check = false;
FuncExprSet::Iterator expr_iter(funcs);
while (expr_iter.hasNext()) {
FuncExpr *expr = expr_iter.next();
if (expr->op() == FuncExpr::op_not) {
if (expr->left()->op() == FuncExpr::op_port
&& expr->left()->port() == clk_port) {
need_gating_check = true;
logic_value = (logic_value == LogicValue::one) ? LogicValue::zero : LogicValue::one;
}
}
else {
if (expr->op() == FuncExpr::op_port
&& expr->port() == clk_port) {
need_gating_check = true;
}
}
}
if (need_gating_check) {
FuncExprSet::Iterator expr_iter2(funcs);
while (expr_iter2.hasNext()) {
FuncExpr *expr = expr_iter2.next();
FuncExprPortIterator en_port_iter(expr);
while (en_port_iter.hasNext()) {
LibertyPort *port = en_port_iter.next();
if (port == enable_port) {
is_clk_gate = true;
return;
}
}
}
}
is_clk_gate = false;
}
void
GatedClk::functionClkOperands(FuncExpr *root_expr,
FuncExpr *expr,
FuncExprSet &funcs) const
{
if (expr->op() != root_expr->op())
funcs.insert(expr);
else {
functionClkOperands(root_expr, expr->left(), funcs);
functionClkOperands(root_expr, expr->right(), funcs);
}
}
const RiseFall *
GatedClk::gatedClkActiveTrans(LogicValue active_value,
const MinMax *min_max) const
{
const RiseFall *leading_rf;
switch (active_value) {
case LogicValue::one:
case LogicValue::unknown:
leading_rf = RiseFall::rise();
break;
case LogicValue::zero:
leading_rf = RiseFall::fall();
break;
default:
criticalError(249, "illegal gated clock active value");
leading_rf = RiseFall::rise();
break;
}
if (min_max == MinMax::max())
return leading_rf;
else
return leading_rf->opposite();
}
} // namespace