OpenSTA/dcalc/PrimaDelayCalc.cc

1053 lines
31 KiB
C++

// OpenSTA, Static Timing Analyzer
// Copyright (c) 2025, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software.
//
// Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
//
// This notice may not be removed or altered from any source distribution.
#include "PrimaDelayCalc.hh"
#include <cmath> // abs
#include "Debug.hh"
#include "Units.hh"
#include "TimingArc.hh"
#include "Liberty.hh"
#include "PortDirection.hh"
#include "Network.hh"
#include "Sdc.hh"
#include "DcalcAnalysisPt.hh"
#include "Corner.hh"
#include "Graph.hh"
#include "Parasitics.hh"
#include "GraphDelayCalc.hh"
#include "DmpDelayCalc.hh"
#include <Eigen/LU>
#include <Eigen/QR>
namespace sta {
using std::string;
using std::abs;
using std::make_shared;
using Eigen::SparseLU;
using Eigen::HouseholderQR;
using Eigen::ColPivHouseholderQR;
// Lawrence Pillage - “Electronic Circuit & System Simulation Methods” 1998
// McGraw-Hill, Inc. New York, NY.
ArcDelayCalc *
makePrimaDelayCalc(StaState *sta)
{
return new PrimaDelayCalc(sta);
}
PrimaDelayCalc::PrimaDelayCalc(StaState *sta) :
DelayCalcBase(sta),
dcalc_args_(nullptr),
load_pin_index_map_(nullptr),
pin_node_map_(network_),
node_index_map_(ParasiticNodeLess(parasitics_, network_)),
prima_order_(3),
make_waveforms_(false),
waveform_drvr_pin_(nullptr),
waveform_load_pin_(nullptr),
watch_pin_values_(network_),
table_dcalc_(makeDmpCeffElmoreDelayCalc(sta))
{
}
PrimaDelayCalc::PrimaDelayCalc(const PrimaDelayCalc &dcalc) :
DelayCalcBase(dcalc),
dcalc_args_(nullptr),
load_pin_index_map_(nullptr),
pin_node_map_(network_),
node_index_map_(ParasiticNodeLess(parasitics_, network_)),
prima_order_(dcalc.prima_order_),
make_waveforms_(false),
waveform_drvr_pin_(nullptr),
waveform_load_pin_(nullptr),
watch_pin_values_(network_),
table_dcalc_(makeDmpCeffElmoreDelayCalc(this))
{
}
PrimaDelayCalc::~PrimaDelayCalc()
{
delete table_dcalc_;
}
ArcDelayCalc *
PrimaDelayCalc::copy()
{
return new PrimaDelayCalc(*this);
}
// Notify algorithm components.
void
PrimaDelayCalc::copyState(const StaState *sta)
{
StaState::copyState(sta);
table_dcalc_->copyState(sta);
}
Parasitic *
PrimaDelayCalc::findParasitic(const Pin *drvr_pin,
const RiseFall *rf,
const DcalcAnalysisPt *dcalc_ap)
{
const Corner *corner = dcalc_ap->corner();
const ParasiticAnalysisPt *parasitic_ap = dcalc_ap->parasiticAnalysisPt();
// set_load net has precidence over parasitics.
if (sdc_->drvrPinHasWireCap(drvr_pin, corner)
|| network_->direction(drvr_pin)->isInternal())
return nullptr;
Parasitic *parasitic = parasitics_->findParasiticNetwork(drvr_pin, parasitic_ap);
if (parasitic)
return parasitic;
const MinMax *cnst_min_max = dcalc_ap->constraintMinMax();
Wireload *wireload = sdc_->wireload(cnst_min_max);
if (wireload) {
float pin_cap, wire_cap, fanout;
bool has_wire_cap;
graph_delay_calc_->netCaps(drvr_pin, rf, dcalc_ap, pin_cap, wire_cap,
fanout, has_wire_cap);
parasitic = parasitics_->makeWireloadNetwork(drvr_pin, wireload,
fanout, cnst_min_max,
parasitic_ap);
}
return parasitic;
}
Parasitic *
PrimaDelayCalc::reduceParasitic(const Parasitic *,
const Pin *,
const RiseFall *,
const DcalcAnalysisPt *)
{
return nullptr;
}
ArcDcalcResult
PrimaDelayCalc::inputPortDelay(const Pin *drvr_pin,
float in_slew,
const RiseFall *rf,
const Parasitic *parasitic,
const LoadPinIndexMap &load_pin_index_map,
const DcalcAnalysisPt *dcalc_ap)
{
ArcDcalcResult dcalc_result(load_pin_index_map.size());
LibertyLibrary *drvr_library = network_->defaultLibertyLibrary();
const Parasitic *pi_elmore = nullptr;
if (parasitic && parasitics_->isParasiticNetwork(parasitic)) {
const ParasiticAnalysisPt *ap = dcalc_ap->parasiticAnalysisPt();
pi_elmore = parasitics_->reduceToPiElmore(parasitic, drvr_pin, rf,
dcalc_ap->corner(),
dcalc_ap->constraintMinMax(), ap);
}
for (auto load_pin_index : load_pin_index_map) {
const Pin *load_pin = load_pin_index.first;
size_t load_idx = load_pin_index.second;
ArcDelay wire_delay = 0.0;
Slew load_slew = in_slew;
bool elmore_exists = false;
float elmore = 0.0;
if (pi_elmore)
parasitics_->findElmore(pi_elmore, load_pin, elmore, elmore_exists);
if (elmore_exists)
// Input port with no external driver.
dspfWireDelaySlew(load_pin, rf, in_slew, elmore, wire_delay, load_slew);
thresholdAdjust(load_pin, drvr_library, rf, wire_delay, load_slew);
dcalc_result.setWireDelay(load_idx, wire_delay);
dcalc_result.setLoadSlew(load_idx, load_slew);
}
return dcalc_result;
}
ArcDcalcResult
PrimaDelayCalc::gateDelay(const Pin *drvr_pin,
const TimingArc *arc,
const Slew &in_slew,
float load_cap,
const Parasitic *parasitic,
const LoadPinIndexMap &load_pin_index_map,
const DcalcAnalysisPt *dcalc_ap)
{
ArcDcalcArgSeq dcalc_args;
dcalc_args.emplace_back(nullptr, drvr_pin, nullptr, arc, in_slew, load_cap, parasitic);
ArcDcalcResultSeq dcalc_results = gateDelays(dcalc_args, load_pin_index_map, dcalc_ap);
return dcalc_results[0];
}
ArcDcalcResultSeq
PrimaDelayCalc::gateDelays(ArcDcalcArgSeq &dcalc_args,
const LoadPinIndexMap &load_pin_index_map,
const DcalcAnalysisPt *dcalc_ap)
{
dcalc_args_ = &dcalc_args;
load_pin_index_map_ = &load_pin_index_map;
drvr_count_ = dcalc_args.size();
dcalc_ap_ = dcalc_ap;
drvr_rf_ = dcalc_args[0].arc()->toEdge()->asRiseFall();
parasitic_network_ = dcalc_args[0].parasitic();
load_cap_ = dcalc_args[0].loadCap();
bool failed = false;
output_waveforms_.resize(drvr_count_);
const DcalcAnalysisPtSeq &dcalc_aps = corners_->dcalcAnalysisPts();
for (size_t drvr_idx = 0; drvr_idx < drvr_count_; drvr_idx++) {
ArcDcalcArg &dcalc_arg = dcalc_args[drvr_idx];
GateTableModel *table_model = dcalc_arg.arc()->gateTableModel(dcalc_ap);
if (table_model && dcalc_arg.parasitic()) {
OutputWaveforms *output_waveforms = table_model->outputWaveforms();
float in_slew = dcalc_arg.inSlewFlt();
if (output_waveforms
// Bounds check because extrapolating waveforms does not work for shit.
&& output_waveforms->slewAxis()->inBounds(in_slew)
&& output_waveforms->capAxis()->inBounds(dcalc_arg.loadCap())) {
output_waveforms_[drvr_idx] = output_waveforms;
debugPrint(debug_, "ccs_dcalc", 1, "%s %s",
dcalc_arg.drvrCell()->name(),
drvr_rf_->to_string().c_str());
LibertyCell *drvr_cell = dcalc_arg.drvrCell();
const LibertyLibrary *drvr_library = drvr_cell->libertyLibrary();
bool vdd_exists;
drvr_library->supplyVoltage("VDD", vdd_, vdd_exists);
if (!vdd_exists)
report_->error(1720, "VDD not defined in library %s", drvr_library->name());
drvr_cell->ensureVoltageWaveforms(dcalc_aps);
if (drvr_idx == 0) {
vth_ = drvr_library->outputThreshold(drvr_rf_) * vdd_;
vl_ = drvr_library->slewLowerThreshold(drvr_rf_) * vdd_;
vh_ = drvr_library->slewUpperThreshold(drvr_rf_) * vdd_;
}
}
else
failed = true;
}
else
failed = true;
}
if (failed)
return tableDcalcResults();
else {
simulate();
return dcalcResults();
}
}
ArcDcalcResultSeq
PrimaDelayCalc::tableDcalcResults()
{
for (size_t drvr_idx = 0; drvr_idx < drvr_count_; drvr_idx++) {
ArcDcalcArg &dcalc_arg = (*dcalc_args_)[drvr_idx];
const Pin *drvr_pin = dcalc_arg.drvrPin();
if (drvr_pin) {
const RiseFall *rf = dcalc_arg.drvrEdge();
const Parasitic *parasitic = table_dcalc_->findParasitic(drvr_pin, rf, dcalc_ap_);
dcalc_arg.setParasitic(parasitic);
}
}
return table_dcalc_->gateDelays(*dcalc_args_, *load_pin_index_map_, dcalc_ap_);
}
void
PrimaDelayCalc::simulate()
{
initSim();
stampEqns();
setXinit();
if (prima_order_ > 0
&& node_count_ > prima_order_) {
primaReduce();
simulate1(Gq_, Cq_, Bq_, xq_init_, Vq_, prima_order_);
}
else {
Eigen::MatrixXd x_to_v = Eigen::MatrixXd::Identity(order_, order_);
simulate1(G_, C_, B_, x_init_, x_to_v, order_);
}
}
void
PrimaDelayCalc::simulate1(const MatrixSd &G,
const MatrixSd &C,
const Eigen::MatrixXd &B,
const Eigen::VectorXd &x_init,
const Eigen::MatrixXd &x_to_v,
const size_t order)
{
Eigen::VectorXd x(order);
Eigen::VectorXd x_prev(order);
Eigen::VectorXd x_prev2(order);
v_.resize(order);
v_prev_.resize(order);
initCeffIdrvr();
x = x_prev = x_prev2 = x_init;
v_ = v_prev_ = x_to_v * x_init;
time_step_ = time_step_prev_ = timeStep();
debugPrint(debug_, "ccs_dcalc", 1, "time step %s", delayAsString(time_step_, this));
MatrixSd A(order, order);
A = G + (2.0 / time_step_) * C;
A.makeCompressed();
SparseLU<MatrixSd> A_solver;
A_solver.compute(A);
// Initial time depends on ceff which impact delay, so use a sim step
// to find an initial ceff.
setPortCurrents();
Eigen::VectorXd rhs(order);
rhs = B * u_ + (1.0 / time_step_) * C * (3.0 * x_prev - x_prev2);
x = A_solver.solve(rhs);
v_ = x_to_v * x;
updateCeffIdrvr();
x = x_prev = x_prev2 = x_init;
v_ = v_prev_ = x_to_v * x_init;
// voltageTime is always for a rising waveform so 0.0v is initial voltage.
double time_begin = output_waveforms_[0]->voltageTime((*dcalc_args_)[0].inSlewFlt(),
ceff_[0], 0.0);
// Limit in case load voltage waveforms don't get to final value.
double time_end = time_begin + maxTime();
if (make_waveforms_)
recordWaveformStep(time_begin);
for (double time = time_begin; time <= time_end; time += time_step_) {
setPortCurrents();
rhs = B * u_ + (1.0 / time_step_) * C * (3.0 * x_prev - x_prev2);
x = A_solver.solve(rhs);
v_ = x_to_v * x;
const ArcDcalcArg &dcalc_arg = (*dcalc_args_)[0];
debugPrint(debug_, "ccs_dcalc", 3, "%s ceff %s VDrvr %.4f Idrvr %s",
delayAsString(time, this),
units_->capacitanceUnit()->asString(ceff_[0]),
voltage(dcalc_arg.drvrPin()),
units_->currentUnit()->asString(drvr_current_[0], 4));
updateCeffIdrvr();
measureThresholds(time);
if (make_waveforms_)
recordWaveformStep(time);
if (loadWaveformsFinished())
break;
time_step_prev_ = time_step_;
x_prev2.swap(x_prev);
x_prev.swap(x);
v_prev_.swap(v_);
}
}
double
PrimaDelayCalc::timeStep()
{
// Needs to use LTE for time step dynamic control.
return driverResistance() * load_cap_ * .02;
}
double
PrimaDelayCalc::maxTime()
{
return (*dcalc_args_)[0].inSlewFlt()
+ (driverResistance() + resistance_sum_) * load_cap_ * 4;
}
float
PrimaDelayCalc::driverResistance()
{
const Pin *drvr_pin = (*dcalc_args_)[0].drvrPin();
LibertyPort *drvr_port = network_->libertyPort(drvr_pin);
const MinMax *min_max = dcalc_ap_->delayMinMax();
return drvr_port->driveResistance(drvr_rf_, min_max);
}
void
PrimaDelayCalc::initSim()
{
ceff_.resize(drvr_count_);
drvr_current_.resize(drvr_count_);
findNodeCount();
setOrder();
// Reset waveform recording.
times_.clear();
drvr_voltages_.clear();
load_voltages_.clear();
measure_thresholds_ = {vl_, vth_, vh_};
}
void
PrimaDelayCalc::findNodeCount()
{
includes_pin_caps_ = parasitics_->includesPinCaps(parasitic_network_);
coupling_cap_multiplier_ = 1.0;
node_capacitances_.clear();
pin_node_map_.clear();
node_index_map_.clear();
for (ParasiticNode *node : parasitics_->nodes(parasitic_network_)) {
if (!parasitics_->isExternal(node)) {
size_t node_idx = node_index_map_.size();
node_index_map_[node] = node_idx;
const Pin *pin = parasitics_->pin(node);
if (pin) {
pin_node_map_[pin] = node_idx;
debugPrint(debug_, "ccs_dcalc", 1, "pin %s node %lu",
network_->pathName(pin),
node_idx);
}
double cap = parasitics_->nodeGndCap(node) + pinCapacitance(node);
node_capacitances_.push_back(cap);
}
}
for (ParasiticCapacitor *capacitor : parasitics_->capacitors(parasitic_network_)) {
float cap = parasitics_->value(capacitor) * coupling_cap_multiplier_;
ParasiticNode *node1 = parasitics_->node1(capacitor);
if (node1
&& !parasitics_->isExternal(node1)) {
size_t node_idx = node_index_map_[node1];
node_capacitances_[node_idx] += cap;
}
ParasiticNode *node2 = parasitics_->node2(capacitor);
if (node2
&& !parasitics_->isExternal(node2)) {
size_t node_idx = node_index_map_[node2];
node_capacitances_[node_idx] += cap;
}
}
node_count_ = node_index_map_.size();
}
float
PrimaDelayCalc::pinCapacitance(ParasiticNode *node)
{
const Pin *pin = parasitics_->pin(node);
float pin_cap = 0.0;
if (pin) {
Port *port = network_->port(pin);
LibertyPort *lib_port = network_->libertyPort(port);
const Corner *corner = dcalc_ap_->corner();
const MinMax *cnst_min_max = dcalc_ap_->constraintMinMax();
if (lib_port) {
if (!includes_pin_caps_)
pin_cap = sdc_->pinCapacitance(pin, drvr_rf_, corner, cnst_min_max);
}
else if (network_->isTopLevelPort(pin))
pin_cap = sdc_->portExtCap(port, drvr_rf_, corner, cnst_min_max);
}
return pin_cap;
}
void
PrimaDelayCalc::setOrder()
{
port_count_ = drvr_count_;
order_ = node_count_ + port_count_;
// Matrix resize also zeros.
G_.resize(order_, order_);
C_.resize(order_, order_);
B_.resize(order_, port_count_);
u_.resize(port_count_);
threshold_times_.resize(node_count_);
}
void
PrimaDelayCalc::initCeffIdrvr()
{
for (size_t drvr_idx = 0; drvr_idx < drvr_count_; drvr_idx++) {
const ArcDcalcArg &dcalc_arg = (*dcalc_args_)[drvr_idx];
ceff_[drvr_idx] = load_cap_;
// voltageTime is always for a rising waveform so 0.0v is initial voltage.
drvr_current_[drvr_idx] =
output_waveforms_[drvr_idx]->voltageCurrent(dcalc_arg.inSlewFlt(),
ceff_[drvr_idx], 0.0);
}
}
void
PrimaDelayCalc::setXinit()
{
x_init_.resize(order_);
double drvr_init_volt = (drvr_rf_ == RiseFall::rise()) ? 0.0 : vdd_;
// Init node voltages.
for (size_t n = 0; n < node_count_ + port_count_; n++)
x_init_[n] = drvr_init_volt;
// Init port voltages.
for (size_t p = 0; p < port_count_; p++)
x_init_[node_count_ + p] = drvr_init_volt;
}
void
PrimaDelayCalc::stampEqns()
{
G_.setZero();
C_.setZero();
B_.setZero();
for (size_t node_idx = 0; node_idx < node_count_; node_idx++)
stampCapacitance(node_idx, node_capacitances_[node_idx]);
resistance_sum_ = 0.0;
for (ParasiticResistor *resistor : parasitics_->resistors(parasitic_network_)) {
ParasiticNode *node1 = parasitics_->node1(resistor);
ParasiticNode *node2 = parasitics_->node2(resistor);
// One commercial extractor creates resistors with identical from/to nodes.
if (node1 != node2) {
size_t node_idx1 = node_index_map_[node1];
size_t node_idx2 = node_index_map_[node2];
float resistance = parasitics_->value(resistor);
stampConductance(node_idx1, node_idx2, 1.0 / resistance);
resistance_sum_ += resistance;
}
}
for (size_t drvr_idx = 0; drvr_idx < drvr_count_; drvr_idx++) {
const ArcDcalcArg &dcalc_arg = (*dcalc_args_)[drvr_idx];
size_t drvr_node = pin_node_map_[dcalc_arg.drvrPin()];
G_.coeffRef(node_count_ + drvr_idx, drvr_node) = 1.0;
G_.coeffRef(node_count_ + drvr_idx, node_count_ + drvr_idx) = -1.0;
// special sauce
G_.coeffRef(drvr_node, drvr_node) += 1e-6;
B_.coeffRef(drvr_node, drvr_idx) = 1.0;
}
if (debug_->check("ccs_dcalc", 3)) {
reportMatrix("G", G_);
reportMatrix("C", C_);
reportMatrix("B", B_);
}
}
// Grounded resistor.
void
PrimaDelayCalc::stampConductance(size_t n1,
double g)
{
G_.coeffRef(n1, n1) += g;
}
// Floating resistor.
void
PrimaDelayCalc::stampConductance(size_t n1,
size_t n2,
double g)
{
G_.coeffRef(n1, n1) += g;
G_.coeffRef(n2, n2) += g;
G_.coeffRef(n1, n2) -= g;
G_.coeffRef(n2, n1) -= g;
}
// Grounded capacitance.
void
PrimaDelayCalc::stampCapacitance(size_t n1,
double cap)
{
C_.coeffRef(n1, n1) += cap;
}
// Floating capacitance.
void
PrimaDelayCalc::stampCapacitance(size_t n1,
size_t n2,
double cap)
{
C_.coeffRef(n1, n1) += cap;
C_.coeffRef(n2, n2) += cap;
C_.coeffRef(n1, n2) -= cap;
C_.coeffRef(n2, n1) -= cap;
}
////////////////////////////////////////////////////////////////
void
PrimaDelayCalc::setPortCurrents()
{
for (size_t drvr_idx = 0; drvr_idx < drvr_count_; drvr_idx++)
u_[drvr_idx] = drvr_current_[drvr_idx];
}
void
PrimaDelayCalc::updateCeffIdrvr()
{
for (size_t drvr_idx = 0; drvr_idx < drvr_count_; drvr_idx++) {
const ArcDcalcArg &dcalc_arg = (*dcalc_args_)[drvr_idx];
const Pin *drvr_pin = dcalc_arg.drvrPin();
size_t node_idx = pin_node_map_[drvr_pin];
double drvr_current = drvr_current_[drvr_idx];
double v1 = voltage(node_idx);
double v2 = voltagePrev(node_idx);
double dv = v1 - v2;
if (drvr_rf_ == RiseFall::rise()) {
if (drvr_current != 0.0
&& dv > 0.0) {
double ceff = drvr_current * time_step_ / dv;
if (output_waveforms_[drvr_idx]->capAxis()->inBounds(ceff))
ceff_[drvr_idx] = ceff;
}
if (v1 > (vdd_ - .01))
// Whoa partner. Head'n for the weeds.
drvr_current_[drvr_idx] = 0.0;
else
drvr_current_[drvr_idx] =
output_waveforms_[drvr_idx]->voltageCurrent(dcalc_arg.inSlewFlt(),
ceff_[drvr_idx], v1);
}
else {
if (drvr_current != 0.0
&& dv < 0.0) {
double ceff = drvr_current * time_step_ / dv;
if (output_waveforms_[drvr_idx]->capAxis()->inBounds(ceff))
ceff_[drvr_idx] = ceff;
}
if (v1 < 0.01) {
// Whoa partner. Head'n for the weeds.
drvr_current_[drvr_idx] = 0.0;
}
else
drvr_current_[drvr_idx] =
output_waveforms_[drvr_idx]->voltageCurrent(dcalc_arg.inSlewFlt(),
ceff_[drvr_idx],
vdd_ - v1);
}
}
}
bool
PrimaDelayCalc::loadWaveformsFinished()
{
for (auto pin_node : pin_node_map_) {
size_t node_idx = pin_node.second;
double v = voltage(node_idx);
if ((drvr_rf_ == RiseFall::rise()
&& v < vh_ + (vdd_ - vh_) * .5)
|| (drvr_rf_ == RiseFall::fall()
&& (v > vl_ * .5))) {
return false;
}
}
return true;
}
////////////////////////////////////////////////////////////////
void
PrimaDelayCalc::measureThresholds(double time)
{
for (auto pin_node1 : pin_node_map_) {
size_t node_idx = pin_node1.second;
double v = voltage(node_idx);
double v_prev = voltagePrev(node_idx);
for (size_t m = 0; m < measure_threshold_count_; m++) {
double th = measure_thresholds_[m];
if ((v_prev < th && th <= v)
|| (v_prev > th && th >= v)) {
double t_cross = time - time_step_ + (th - v_prev) * time_step_ / (v - v_prev);
debugPrint(debug_, "ccs_measure", 1, "node %lu cross %.2f %s",
node_idx,
th,
delayAsString(t_cross, this));
threshold_times_[node_idx][m] = t_cross;
}
}
}
}
double
PrimaDelayCalc::voltage(const Pin *pin)
{
size_t node_idx = pin_node_map_[pin];
return v_[node_idx];
}
double
PrimaDelayCalc::voltage(size_t node_idx)
{
return v_[node_idx];
}
double
PrimaDelayCalc::voltagePrev(size_t node_idx)
{
return v_prev_[node_idx];
}
ArcDcalcResultSeq
PrimaDelayCalc::dcalcResults()
{
ArcDcalcResultSeq dcalc_results(drvr_count_);
for (size_t drvr_idx = 0; drvr_idx < drvr_count_; drvr_idx++) {
ArcDcalcArg &dcalc_arg = (*dcalc_args_)[drvr_idx];
ArcDcalcResult &dcalc_result = dcalc_results[drvr_idx];
const Pin *drvr_pin = dcalc_arg.drvrPin();
const LibertyLibrary *drvr_library = dcalc_arg.drvrLibrary();
size_t drvr_node = pin_node_map_[drvr_pin];
ThresholdTimes &drvr_times = threshold_times_[drvr_node];
float ref_time = output_waveforms_[drvr_idx]->referenceTime(dcalc_arg.inSlewFlt());
ArcDelay gate_delay = drvr_times[threshold_vth] - ref_time;
Slew drvr_slew = abs(drvr_times[threshold_vh] - drvr_times[threshold_vl]);
dcalc_result.setGateDelay(gate_delay);
dcalc_result.setDrvrSlew(drvr_slew);
debugPrint(debug_, "ccs_dcalc", 2,
"%s gate delay %s slew %s",
network_->pathName(drvr_pin),
delayAsString(gate_delay, this),
delayAsString(drvr_slew, this));
dcalc_result.setLoadCount(load_pin_index_map_->size());
for (auto load_pin_index : *load_pin_index_map_) {
const Pin *load_pin = load_pin_index.first;
size_t load_idx = load_pin_index.second;
size_t load_node = pin_node_map_[load_pin];
ThresholdTimes &wire_times = threshold_times_[load_node];
ThresholdTimes &drvr_times = threshold_times_[drvr_node];
ArcDelay wire_delay = wire_times[threshold_vth] - drvr_times[threshold_vth];
Slew load_slew = abs(wire_times[threshold_vh] - wire_times[threshold_vl]);
debugPrint(debug_, "ccs_dcalc", 2,
"load %s %s delay %s slew %s",
network_->pathName(load_pin),
drvr_rf_->to_string().c_str(),
delayAsString(wire_delay, this),
delayAsString(load_slew, this));
thresholdAdjust(load_pin, drvr_library, drvr_rf_, wire_delay, load_slew);
dcalc_result.setWireDelay(load_idx, wire_delay);
dcalc_result.setLoadSlew(load_idx, load_slew);
}
}
return dcalc_results;
}
////////////////////////////////////////////////////////////////
void
PrimaDelayCalc::setPrimaReduceOrder(size_t order)
{
prima_order_ = order;
}
// This version fills in one column of the orthonomal matrix
// at a time as in the Gram-Schmidt wikipedia algorithm.
void
PrimaDelayCalc::primaReduce()
{
G_.makeCompressed();
// Step 3: solve G*R = B for R
SparseLU<MatrixSd> G_solver(G_);
if (G_solver.info() != Eigen::Success)
report_->error(1752, "G matrix is singular.");
Eigen::MatrixXd R(order_, port_count_);
R = G_solver.solve(B_);
// Step 4
Eigen::HouseholderQR<Eigen::MatrixXd> R_solver(R);
Eigen::MatrixXd Q = R_solver.householderQ();
// Vq is "X" in the prima paper (too many "x" variables in the paper).
Vq_.resize(order_, prima_order_);
// Vq = first port_count columns of Q.
Vq_.block(0, 0, order_, port_count_) = Q.block(0, 0, order_, port_count_);
// Step 6 - Arnolid iteration
for (size_t k = 1; k < prima_order_; k++) {
Eigen::VectorXd V = C_ * Vq_.col(k - 1);
Vq_.col(k) = G_solver.solve(V);
// Modified Gram-Schmidt orthonormalization
for (size_t j = 0; j < k; j++) {
double H = Vq_.col(j).transpose() * Vq_.col(k);
Vq_.col(k) = Vq_.col(k) - H * Vq_.col(j);
}
Eigen::VectorXd Vq_k = Vq_.col(k);
Eigen::HouseholderQR<Eigen::MatrixXd> Vq_k_solver(Vq_k);
Eigen::MatrixXd VqQ = Vq_k_solver.householderQ();
Vq_.col(k) = VqQ.col(0);
}
// Step 8 - Matrix projection
MatrixSd Vqs = Vq_.sparseView();
Cq_ = Vqs.transpose() * C_ * Vqs;
Gq_ = Vqs.transpose() * G_ * Vqs;
Bq_ = Vqs.transpose() * B_;
// x = Vq * x~
// solve x_init = Vq * x~_init for x~_init
xq_init_ = Vq_.colPivHouseholderQr().solve(x_init_);
if (debug_->check("ccs_dcalc", 3)) {
reportMatrix("Vq", Vq_);
reportMatrix("G~", Gq_);
reportMatrix("C~", Cq_);
reportMatrix("B~", Bq_);
}
}
// This version fills in port_count columns of the orthonomal matrix
// at a time as shown in the prima algorithm figure 4.
void
PrimaDelayCalc::primaReduce2()
{
G_.makeCompressed();
// Step 3: solve G*R = B for R
Eigen::SparseLU<MatrixSd> G_solver(G_);
Eigen::MatrixXd R(order_, port_count_);
R = G_solver.solve(B_);
// Step 4
Eigen::HouseholderQR<Eigen::MatrixXd> R_solver(R);
Eigen::MatrixXd Q = R_solver.householderQ();
// Vq is "X" in the prima paper (too many "x" variables in the paper).
size_t n = ceil(prima_order_ / static_cast<double>(port_count_));
Eigen::MatrixXd Vq(order_, n * port_count_);
// // Vq = first port_count columns of Q.
Vq.block(0, 0, order_, port_count_) = Q.block(0, 0, order_, port_count_);
// Step 6 - Arnolid iteration
for (size_t k = 1; k < n; k++) {
Eigen::MatrixXd V = C_ * Vq.block(0, (k - 1) * port_count_, order_, port_count_);
Eigen::MatrixXd GV = G_solver.solve(V);
Vq.block(0, k * port_count_, order_, port_count_) = GV;
// Modified Gram-Schmidt orthonormalization
for (size_t j = 0; j < k; j++) {
Eigen::MatrixXd H = Vq.block(0, j * port_count_, order_, port_count_).transpose()
* Vq.block(0, k * port_count_, order_, port_count_);
Vq.block(0, k * port_count_, order_, port_count_) =
Vq.block(0, k * port_count_, order_, port_count_) - Vq.block(0, j * port_count_, order_, port_count_) * H;
}
Eigen::MatrixXd Vq_k = Vq.block(0, k * port_count_, order_, port_count_);
Eigen::HouseholderQR<Eigen::MatrixXd> Vq_k_solver(Vq_k);
Eigen::MatrixXd VqQ = Vq_k_solver.householderQ();
Vq.block(0, k * port_count_, order_, port_count_) =
VqQ.block(0, 0, order_, port_count_);
}
Vq_.resize(order_, prima_order_);
Vq_ = Vq.block(0, 0, order_, prima_order_);
// Step 8 - Matrix projection
MatrixSd Vqs = Vq_.sparseView();
Cq_ = Vqs.transpose() * C_ * Vqs;
Gq_ = Vqs.transpose() * G_ * Vqs;
Bq_ = Vqs.transpose() * B_;
// x = Vq * x~
// solve x_init = Vq * x~_init for x~_init
xq_init_ = Vq_.colPivHouseholderQr().solve(x_init_);
if (debug_->check("ccs_dcalc", 3)) {
reportMatrix("Vq", Vq_);
reportMatrix("G~", Gq_);
reportMatrix("C~", Cq_);
reportMatrix("B~", Bq_);
}
}
////////////////////////////////////////////////////////////////
void
PrimaDelayCalc::recordWaveformStep(double time)
{
times_.push_back(time);
if (waveform_drvr_pin_) {
double drvr_v = voltage(waveform_drvr_pin_);
drvr_voltages_.push_back(drvr_v);
}
if (waveform_load_pin_) {
double load_v = voltage(waveform_load_pin_);
load_voltages_.push_back(load_v);
}
for (auto &pin_wave : watch_pin_values_) {
const Pin *pin = pin_wave.first;
FloatSeq &waveform = pin_wave.second;
double pin_v = voltage(pin);
waveform.push_back(pin_v);
}
}
////////////////////////////////////////////////////////////////
string
PrimaDelayCalc::reportGateDelay(const Pin *drvr_pin,
const TimingArc *arc,
const Slew &in_slew,
float load_cap,
const Parasitic *,
const LoadPinIndexMap &,
const DcalcAnalysisPt *dcalc_ap,
int digits)
{
GateTimingModel *model = arc->gateModel(dcalc_ap);
if (model) {
float in_slew1 = delayAsFloat(in_slew);
return model->reportGateDelay(pinPvt(drvr_pin, dcalc_ap), in_slew1, load_cap,
false, digits);
}
return "";
}
////////////////////////////////////////////////////////////////
void
PrimaDelayCalc::watchPin(const Pin *pin)
{
watch_pin_values_[pin] = FloatSeq();
make_waveforms_ = true;
}
void
PrimaDelayCalc::clearWatchPins()
{
watch_pin_values_.clear();
make_waveforms_ = false;
}
PinSeq
PrimaDelayCalc::watchPins() const
{
PinSeq pins;
for (auto pin_values : watch_pin_values_) {
const Pin *pin = pin_values.first;
pins.push_back(pin);
}
return pins;
}
Waveform
PrimaDelayCalc::watchWaveform(const Pin *pin)
{
FloatSeq &voltages = watch_pin_values_[pin];
TableAxisPtr time_axis = make_shared<TableAxis>(TableAxisVariable::time,
new FloatSeq(times_));
Table1 waveform(new FloatSeq(voltages), time_axis);
return waveform;
}
////////////////////////////////////////////////////////////////
void
PrimaDelayCalc::reportMatrix(const char *name,
MatrixSd &matrix)
{
report_->reportLine("%s", name);
reportMatrix(matrix);
}
void
PrimaDelayCalc::reportMatrix(const char *name,
Eigen::MatrixXd &matrix)
{
report_->reportLine("%s", name);
reportMatrix(matrix);
}
void
PrimaDelayCalc::reportMatrix(const char *name,
Eigen::VectorXd &matrix)
{
report_->reportLine("%s", name);
reportMatrix(matrix);
}
void
PrimaDelayCalc::reportVector(const char *name,
std::vector<double> &matrix)
{
report_->reportLine("%s", name);
reportVector(matrix);
}
void
PrimaDelayCalc::reportMatrix(MatrixSd &matrix)
{
for (Eigen::Index i = 0; i < matrix.rows(); i++) {
string line = "| ";
for (Eigen::Index j = 0; j < matrix.cols(); j++) {
std::string entry = stdstrPrint("%10.3e", matrix.coeff(i, j));
line += entry;
line += " ";
}
line += "|";
report_->reportLineString(line);
}
}
void
PrimaDelayCalc::reportMatrix(Eigen::MatrixXd &matrix)
{
for (Eigen::Index i = 0; i < matrix.rows(); i++) {
std::string line = "| ";
for (Eigen::Index j = 0; j < matrix.cols(); j++) {
std::string entry = stdstrPrint("%10.3e", matrix.coeff(i, j));
line += entry;
line += " ";
}
line += "|";
report_->reportLineString(line);
}
}
void
PrimaDelayCalc::reportMatrix(Eigen::VectorXd &matrix)
{
std::string line = "| ";
for (Eigen::Index i = 0; i < matrix.rows(); i++) {
std::string entry = stdstrPrint("%10.3e", matrix.coeff(i));
line += entry;
line += " ";
}
line += "|";
report_->reportLineString(line);
}
void
PrimaDelayCalc::reportVector(std::vector<double> &matrix)
{
std::string line = "| ";
for (size_t i = 0; i < matrix.size(); i++) {
std::string entry = stdstrPrint("%10.3e", matrix[i]);
line += entry;
line += " ";
}
line += "|";
report_->reportLineString(line);
}
} // namespace