OpenSTA/search/VisitPathEnds.cc

646 lines
21 KiB
C++

// OpenSTA, Static Timing Analyzer
// Copyright (c) 2025, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software.
//
// Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
//
// This notice may not be removed or altered from any source distribution.
#include "VisitPathEnds.hh"
#include "Debug.hh"
#include "Liberty.hh"
#include "Network.hh"
#include "TimingArc.hh"
#include "ExceptionPath.hh"
#include "PortDelay.hh"
#include "Sdc.hh"
#include "Graph.hh"
#include "ClkInfo.hh"
#include "Tag.hh"
#include "Path.hh"
#include "PathAnalysisPt.hh"
#include "PathEnd.hh"
#include "Search.hh"
#include "GatedClk.hh"
namespace sta {
VisitPathEnds::VisitPathEnds(const StaState *sta) :
StaState(sta)
{
}
void
VisitPathEnds::visitPathEnds(Vertex *vertex,
PathEndVisitor *visitor)
{
visitPathEnds(vertex, nullptr, MinMaxAll::all(), false, visitor);
}
void
VisitPathEnds::visitPathEnds(Vertex *vertex,
const Corner *corner,
const MinMaxAll *min_max,
bool filtered,
PathEndVisitor *visitor)
{
// Ignore slack on bidirect driver vertex. The load vertex gets the slack.
if (!vertex->isBidirectDriver()) {
const Pin *pin = vertex->pin();
debugPrint(debug_, "search", 2, "find end slack %s",
vertex->name(sdc_network_));
visitor->vertexBegin(vertex);
bool is_constrained = false;
visitClkedPathEnds(pin, vertex, corner, min_max, filtered, visitor,
is_constrained);
if (search_->unconstrainedPaths()
&& !is_constrained
&& !vertex->isDisabledConstraint())
visitUnconstrainedPathEnds(pin, vertex, corner, min_max, filtered,
visitor);
visitor->vertexEnd(vertex);
}
}
void
VisitPathEnds::visitClkedPathEnds(const Pin *pin,
Vertex *vertex,
const Corner *corner,
const MinMaxAll *min_max,
bool filtered,
PathEndVisitor *visitor,
bool &is_constrained)
{
bool is_segment_start = search_->isSegmentStart(pin);
VertexPathIterator path_iter(vertex, this);
while (path_iter.hasNext()) {
Path *path = path_iter.next();
PathAnalysisPt *path_ap = path->pathAnalysisPt(this);
const MinMax *path_min_max = path_ap->pathMinMax();
const RiseFall *end_rf = path->transition(this);
Tag *tag = path->tag(this);
if ((corner == nullptr
|| path_ap->corner() == corner)
&& min_max->matches(path_min_max)
// Ignore generated clock source paths.
&& !path->clkInfo(this)->isGenClkSrcPath()
&& !falsePathTo(path, pin, end_rf, path_min_max)
// Ignore segment startpoint paths.
&& (!is_segment_start
|| !tag->isSegmentStart())) {
// set_output_delay to timing check has precedence.
if (sdc_->hasOutputDelay(pin))
visitOutputDelayEnd(pin, path, end_rf, path_ap, filtered, visitor,
is_constrained);
else if (vertex->hasChecks())
visitCheckEnd(pin, vertex, path, end_rf, path_ap, filtered, visitor,
is_constrained);
else if (!sdc_->exceptionToInvalid(pin)
&& (!filtered
|| search_->matchesFilter(path, nullptr))) {
PathDelay *path_delay = pathDelayTo(path, pin, end_rf, path_min_max);
if (path_delay) {
PathEndPathDelay path_end(path_delay, path, this);
visitor->visit(&path_end);
is_constrained = true;
}
}
if (sdc_->gatedClkChecksEnabled())
visitGatedClkEnd(pin, vertex, path, end_rf, path_ap, filtered, visitor,
is_constrained);
visitDataCheckEnd(pin, path, end_rf, path_ap, filtered, visitor,
is_constrained);
}
}
}
void
VisitPathEnds::visitCheckEnd(const Pin *pin,
Vertex *vertex,
Path *path,
const RiseFall *end_rf,
const PathAnalysisPt *path_ap,
bool filtered,
PathEndVisitor *visitor,
bool &is_constrained)
{
const ClockEdge *src_clk_edge = path->clkEdge(this);
const Clock *src_clk = path->clock(this);
const MinMax *min_max = path_ap->pathMinMax();
const PathAnalysisPt *tgt_clk_path_ap = path_ap->tgtClkAnalysisPt();
bool check_clked = false;
VertexInEdgeIterator edge_iter(vertex, graph_);
while (edge_iter.hasNext()) {
Edge *edge = edge_iter.next();
Vertex *tgt_clk_vertex = edge->from(graph_);
const TimingRole *check_role = edge->role();
if (checkEdgeEnabled(edge)
&& check_role->pathMinMax() == min_max) {
TimingArcSet *arc_set = edge->timingArcSet();
for (TimingArc *check_arc : arc_set->arcs()) {
RiseFall *clk_rf = check_arc->fromEdge()->asRiseFall();
if (check_arc->toEdge()->asRiseFall() == end_rf
&& clk_rf) {
VertexPathIterator tgt_clk_path_iter(tgt_clk_vertex, clk_rf,
tgt_clk_path_ap, this);
while (tgt_clk_path_iter.hasNext()) {
Path *tgt_clk_path = tgt_clk_path_iter.next();
ClkInfo *tgt_clk_info = tgt_clk_path->clkInfo(this);
const ClockEdge *tgt_clk_edge = tgt_clk_path->clkEdge(this);
const Clock *tgt_clk = tgt_clk_path->clock(this);
const Pin *tgt_pin = tgt_clk_vertex->pin();
ExceptionPath *exception = exceptionTo(path, pin, end_rf,
tgt_clk_edge, min_max);
// Ignore generated clock source paths.
if (!tgt_clk_info->isGenClkSrcPath()
&& tgt_clk_path->isClock(this)) {
check_clked = true;
if (!filtered
|| search_->matchesFilter(path, tgt_clk_edge)) {
if (src_clk_edge
&& tgt_clk != sdc_->defaultArrivalClock()
&& sdc_->sameClockGroup(src_clk, tgt_clk)
&& !sdc_->clkStopPropagation(tgt_pin, tgt_clk)
&& (search_->checkDefaultArrivalPaths()
|| src_clk_edge
!= sdc_->defaultArrivalClockEdge())
// False paths and path delays override
// paths.
&& (exception == nullptr
|| exception->isFilter()
|| exception->isGroupPath()
|| exception->isMultiCycle())) {
MultiCyclePath *mcp=dynamic_cast<MultiCyclePath*>(exception);
if (network_->isLatchData(pin)
&& check_role == TimingRole::setup()) {
PathEndLatchCheck path_end(path, check_arc, edge,
tgt_clk_path, mcp, nullptr,
this);
visitor->visit(&path_end);
is_constrained = true;
}
else {
PathEndCheck path_end(path, check_arc, edge,
tgt_clk_path, mcp, this);
visitor->visit(&path_end);
is_constrained = true;
}
}
else if (exception
&& exception->isPathDelay()
&& (src_clk == nullptr
|| sdc_->sameClockGroup(src_clk,
tgt_clk))) {
PathDelay *path_delay = dynamic_cast<PathDelay*>(exception);
if (network_->isLatchData(pin)
&& check_role == TimingRole::setup()) {
PathEndLatchCheck path_end(path, check_arc, edge,
tgt_clk_path, nullptr,
path_delay, this);
visitor->visit(&path_end);
}
else {
PathEndPathDelay path_end(path_delay, path, tgt_clk_path,
check_arc, edge, this);
visitor->visit(&path_end);
is_constrained = true;
}
}
}
}
}
}
}
}
}
if (!check_clked
&& !sdc_->exceptionToInvalid(pin))
visitCheckEndUnclked(pin, vertex, path, end_rf, path_ap, filtered,
visitor, is_constrained);
}
void
VisitPathEnds::visitCheckEndUnclked(const Pin *pin,
Vertex *vertex,
Path *path,
const RiseFall *end_rf,
const PathAnalysisPt *path_ap,
bool filtered,
PathEndVisitor *visitor,
bool &is_constrained)
{
const MinMax *min_max = path_ap->pathMinMax();
VertexInEdgeIterator edge_iter(vertex, graph_);
while (edge_iter.hasNext()) {
Edge *edge = edge_iter.next();
const TimingRole *check_role = edge->role();
if (checkEdgeEnabled(edge)
&& check_role->pathMinMax() == min_max) {
TimingArcSet *arc_set = edge->timingArcSet();
for (TimingArc *check_arc : arc_set->arcs()) {
RiseFall *clk_rf = check_arc->fromEdge()->asRiseFall();
if (check_arc->toEdge()->asRiseFall() == end_rf
&& clk_rf
&& (!filtered
|| search_->matchesFilter(path, nullptr))) {
ExceptionPath *exception = exceptionTo(path, pin, end_rf,
nullptr, min_max);
// False paths and path delays override multicycle paths.
if (exception
&& exception->isPathDelay()) {
PathDelay *path_delay = dynamic_cast<PathDelay*>(exception);
PathEndPathDelay path_end(path_delay, path, nullptr,
check_arc, edge, this);
visitor->visit(&path_end);
is_constrained = true;
}
}
}
}
}
}
bool
VisitPathEnds::checkEdgeEnabled(Edge *edge) const
{
const TimingRole *check_role = edge->role();
return check_role->isTimingCheck()
&& search_->evalPred()->searchFrom(edge->from(graph_))
&& !edge->isDisabledConstraint()
&& !edge->isDisabledCond()
&& !sdc_->isDisabledCondDefault(edge)
&& !((check_role == TimingRole::recovery()
|| check_role == TimingRole::removal())
&& !sdc_->recoveryRemovalChecksEnabled());
}
void
VisitPathEnds::visitOutputDelayEnd(const Pin *pin,
Path *path,
const RiseFall *end_rf,
const PathAnalysisPt *path_ap,
bool filtered,
PathEndVisitor *visitor,
bool &is_constrained)
{
const MinMax *min_max = path_ap->pathMinMax();
OutputDelaySet *output_delays = sdc_->outputDelaysLeafPin(pin);
if (output_delays) {
for (OutputDelay *output_delay : *output_delays) {
float margin;
bool exists;
output_delay->delays()->value(end_rf, min_max, margin, exists);
if (exists) {
const Pin *ref_pin = output_delay->refPin();
const ClockEdge *tgt_clk_edge = output_delay->clkEdge();
if (!filtered
|| search_->matchesFilter(path, tgt_clk_edge)) {
if (ref_pin) {
Clock *tgt_clk = output_delay->clock();
Vertex *ref_vertex = graph_->pinLoadVertex(ref_pin);
RiseFall *ref_rf = output_delay->refTransition();
VertexPathIterator ref_path_iter(ref_vertex,ref_rf,path_ap,this);
while (ref_path_iter.hasNext()) {
Path *ref_path = ref_path_iter.next();
if (ref_path->isClock(this)
&& (tgt_clk == nullptr
|| ref_path->clock(this) == tgt_clk))
visitOutputDelayEnd1(output_delay, pin, path, end_rf,
ref_path->clkEdge(this), ref_path, min_max,
visitor, is_constrained);
}
}
else
visitOutputDelayEnd1(output_delay, pin, path, end_rf,
tgt_clk_edge, nullptr, min_max,
visitor, is_constrained);
}
}
}
}
}
void
VisitPathEnds::visitOutputDelayEnd1(OutputDelay *output_delay,
const Pin *pin,
Path *path,
const RiseFall *end_rf,
const ClockEdge *tgt_clk_edge,
Path *ref_path,
const MinMax *min_max,
PathEndVisitor *visitor,
bool &is_constrained)
{
// Target clk is not required for path delay,
// but the exception may be -to clk.
ExceptionPath *exception = exceptionTo(path, pin, end_rf, tgt_clk_edge,
min_max);
const ClockEdge *src_clk_edge = path->clkEdge(this);
if (exception
&& exception->isPathDelay()) {
PathDelay *path_delay = dynamic_cast<PathDelay*>(exception);
PathEndPathDelay path_end(path_delay, path, output_delay, this);
visitor->visit(&path_end);
is_constrained = true;
}
else if (src_clk_edge
&& (search_->checkDefaultArrivalPaths()
|| src_clk_edge
!= sdc_->defaultArrivalClockEdge())
&& tgt_clk_edge
&& sdc_->sameClockGroup(path->clock(this), tgt_clk_edge->clock())
// False paths and path delays override.
&& (exception == nullptr
|| exception->isFilter()
|| exception->isGroupPath()
|| exception->isMultiCycle())) {
MultiCyclePath *mcp = dynamic_cast<MultiCyclePath*>(exception);
PathEndOutputDelay path_end(output_delay, path, ref_path, mcp, this);
visitor->visit(&path_end);
is_constrained = true;
}
}
////////////////////////////////////////////////////////////////
// Look for clock gating functions where path is the clock enable.
void
VisitPathEnds::visitGatedClkEnd(const Pin *pin,
Vertex *vertex,
Path *path,
const RiseFall *end_rf,
const PathAnalysisPt *path_ap,
bool filtered,
PathEndVisitor *visitor,
bool &is_constrained)
{
const ClockEdge *src_clk_edge = path->clkEdge(this);
if (src_clk_edge) {
GatedClk *gated_clk = search_->gatedClk();
Clock *src_clk = src_clk_edge->clock();
bool is_gated_clk_enable;
const Pin *clk_pin;
LogicValue logic_active_value;
gated_clk->isGatedClkEnable(vertex,
is_gated_clk_enable, clk_pin, logic_active_value);
if (is_gated_clk_enable) {
const PathAnalysisPt *clk_path_ap = path_ap->tgtClkAnalysisPt();
const MinMax *min_max = path_ap->pathMinMax();
Vertex *clk_vertex = graph_->pinLoadVertex(clk_pin);
LogicValue active_value =
sdc_->clockGatingActiveValue(clk_pin, pin);
RiseFall *clk_rf =
// Clock active value specified by set_clock_gating_check
// overrides the library cell function active value.
gated_clk->gatedClkActiveTrans((active_value == LogicValue::unknown) ?
logic_active_value : active_value,
min_max);
VertexPathIterator clk_path_iter(clk_vertex, clk_rf, clk_path_ap, this);
while (clk_path_iter.hasNext()) {
Path *clk_path = clk_path_iter.next();
const ClockEdge *clk_edge = clk_path->clkEdge(this);
const Clock *clk = clk_edge ? clk_edge->clock() : nullptr;
if (clk_path->isClock(this)
// Ignore unclocked paths (from path delay constraints).
&& clk_edge
&& clk_edge != sdc_->defaultArrivalClockEdge()
// Ignore generated clock source paths.
&& !path->clkInfo(this)->isGenClkSrcPath()
&& !sdc_->clkStopPropagation(pin, clk)
&& clk_vertex->hasDownstreamClkPin()) {
TimingRole *check_role = (min_max == MinMax::max())
? TimingRole::gatedClockSetup()
: TimingRole::gatedClockHold();
float margin = clockGatingMargin(clk, clk_pin,
pin, end_rf, min_max);
ExceptionPath *exception = exceptionTo(path, pin, end_rf,
clk_edge, min_max);
if (sdc_->sameClockGroup(src_clk, clk)
// False paths and path delays override.
&& (exception == nullptr
|| exception->isFilter()
|| exception->isGroupPath()
|| exception->isMultiCycle())
&& (!filtered
|| search_->matchesFilter(path, clk_edge))) {
MultiCyclePath *mcp =
dynamic_cast<MultiCyclePath *>(exception);
PathEndGatedClock path_end(path, clk_path, check_role,
mcp, margin, this);
visitor->visit(&path_end);
is_constrained = true;
}
}
}
}
}
}
// Gated clock setup/hold margin respecting precedence rules.
// Look for margin from highest precedence level to lowest.
float
VisitPathEnds::clockGatingMargin(const Clock *clk,
const Pin *clk_pin,
const Pin *enable_pin,
const RiseFall *enable_rf,
const SetupHold *setup_hold)
{
bool exists;
float margin;
sdc_->clockGatingMarginEnablePin(enable_pin, enable_rf,
setup_hold, exists, margin);
if (exists)
return margin;
Instance *inst = network_->instance(enable_pin);
sdc_->clockGatingMarginInstance(inst, enable_rf, setup_hold,
exists, margin);
if (exists)
return margin;
sdc_->clockGatingMarginClkPin(clk_pin, enable_rf, setup_hold,
exists, margin);
if (exists)
return margin;
sdc_->clockGatingMarginClk(clk, enable_rf, setup_hold,
exists, margin);
if (exists)
return margin;
sdc_->clockGatingMargin(enable_rf, setup_hold,
exists, margin);
if (exists)
return margin;
else
return 0.0;
}
////////////////////////////////////////////////////////////////
void
VisitPathEnds::visitDataCheckEnd(const Pin *pin,
Path *path,
const RiseFall *end_rf,
const PathAnalysisPt *path_ap,
bool filtered,
PathEndVisitor *visitor,
bool &is_constrained)
{
const ClockEdge *src_clk_edge = path->clkEdge(this);
if (src_clk_edge) {
DataCheckSet *checks = sdc_->dataChecksTo(pin);
if (checks) {
const Clock *src_clk = src_clk_edge->clock();
const MinMax *min_max = path_ap->pathMinMax();
const PathAnalysisPt *clk_ap = path_ap->tgtClkAnalysisPt();
DataCheckSet::Iterator check_iter(checks);
while (check_iter.hasNext()) {
DataCheck *check = check_iter.next();
const Pin *from_pin = check->from();
Vertex *from_vertex = graph_->pinLoadVertex(from_pin);
for (auto from_rf : RiseFall::range()) {
float margin;
bool margin_exists;
check->margin(from_rf, end_rf, min_max, margin, margin_exists);
if (margin_exists)
visitDataCheckEnd1(check, pin, path, src_clk, end_rf,
min_max, clk_ap, from_pin, from_vertex,
from_rf, filtered, visitor, is_constrained);
}
}
}
}
}
bool
VisitPathEnds::visitDataCheckEnd1(DataCheck *check,
const Pin *pin,
Path *path,
const Clock *src_clk,
const RiseFall *end_rf,
const MinMax *min_max,
const PathAnalysisPt *clk_ap,
const Pin *from_pin,
Vertex *from_vertex,
RiseFall *from_rf,
bool filtered,
PathEndVisitor *visitor,
bool &is_constrained)
{
bool found_from_path = false;
VertexPathIterator tgt_clk_path_iter(from_vertex,from_rf,clk_ap,this);
while (tgt_clk_path_iter.hasNext()) {
Path *tgt_clk_path = tgt_clk_path_iter.next();
const ClockEdge *tgt_clk_edge = tgt_clk_path->clkEdge(this);
// Ignore generated clock source paths.
if (tgt_clk_edge
&& !tgt_clk_path->clkInfo(this)->isGenClkSrcPath()) {
found_from_path = true;
const Clock *tgt_clk = tgt_clk_edge->clock();
ExceptionPath *exception = exceptionTo(path, pin, end_rf,
tgt_clk_edge, min_max);
if (sdc_->sameClockGroup(src_clk, tgt_clk)
&& !sdc_->clkStopPropagation(from_pin, tgt_clk)
// False paths and path delays override.
&& (exception == 0
|| exception->isFilter()
|| exception->isGroupPath()
|| exception->isMultiCycle())
&& (!filtered
|| search_->matchesFilter(path, tgt_clk_edge))) {
MultiCyclePath *mcp=dynamic_cast<MultiCyclePath*>(exception);
PathEndDataCheck path_end(check, path, tgt_clk_path, mcp, this);
visitor->visit(&path_end);
is_constrained = true;
}
}
}
return found_from_path;
}
////////////////////////////////////////////////////////////////
void
VisitPathEnds::visitUnconstrainedPathEnds(const Pin *pin,
Vertex *vertex,
const Corner *corner,
const MinMaxAll *min_max,
bool filtered,
PathEndVisitor *visitor)
{
VertexPathIterator path_iter(vertex, this);
while (path_iter.hasNext()) {
Path *path = path_iter.next();
PathAnalysisPt *path_ap = path->pathAnalysisPt(this);
const MinMax *path_min_max = path_ap->pathMinMax();
if ((corner == nullptr
|| path_ap->corner() == corner)
&& min_max->matches(path_min_max)
// Ignore generated clock source paths.
&& !path->clkInfo(this)->isGenClkSrcPath()
&& (!filtered
|| search_->matchesFilter(path, nullptr))
&& !falsePathTo(path, pin, path->transition(this),
path->minMax(this))) {
PathEndUnconstrained path_end(path);
visitor->visit(&path_end);
}
}
}
////////////////////////////////////////////////////////////////
bool
VisitPathEnds::falsePathTo(Path *path,
const Pin *pin,
const RiseFall *rf,
const MinMax *min_max)
{
ExceptionPath *exception = search_->exceptionTo(ExceptionPathType::false_path, path,
pin, rf, nullptr, min_max,
false, false);
return exception != nullptr;
}
PathDelay *
VisitPathEnds::pathDelayTo(Path *path,
const Pin *pin,
const RiseFall *rf,
const MinMax *min_max)
{
ExceptionPath *exception = search_->exceptionTo(ExceptionPathType::path_delay,
path, pin, rf, nullptr,
min_max, false,
// Register clk pins only
// match with -to pin.
network_->isRegClkPin(pin));
return dynamic_cast<PathDelay*>(exception);
}
ExceptionPath *
VisitPathEnds::exceptionTo(const Path *path,
const Pin *pin,
const RiseFall *rf,
const ClockEdge *clk_edge,
const MinMax *min_max) const
{
return search_->exceptionTo(ExceptionPathType::any, path, pin, rf, clk_edge,
min_max, false, false);
}
} // namespace