OpenSTA/search/CheckSlewLimits.cc

423 lines
12 KiB
C++

// OpenSTA, Static Timing Analyzer
// Copyright (c) 2025, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
// The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software.
//
// Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
//
// This notice may not be removed or altered from any source distribution.
#include "CheckSlewLimits.hh"
#include "Fuzzy.hh"
#include "Liberty.hh"
#include "Network.hh"
#include "Sdc.hh"
#include "InputDrive.hh"
#include "Graph.hh"
#include "DcalcAnalysisPt.hh"
#include "GraphDelayCalc.hh"
#include "StaState.hh"
#include "Corner.hh"
#include "Path.hh"
#include "PortDirection.hh"
#include "Search.hh"
#include "ClkNetwork.hh"
namespace sta {
class PinSlewLimitSlackLess
{
public:
PinSlewLimitSlackLess(const Corner *corner,
const MinMax *min_max,
CheckSlewLimits *check_slew_limit,
const StaState *sta);
bool operator()(const Pin *pin1,
const Pin *pin2) const;
private:
const Corner *corner_;
const MinMax *min_max_;
CheckSlewLimits *check_slew_limit_;
const StaState *sta_;
};
PinSlewLimitSlackLess::PinSlewLimitSlackLess(const Corner *corner,
const MinMax *min_max,
CheckSlewLimits *check_slew_limit,
const StaState *sta) :
corner_(corner),
min_max_(min_max),
check_slew_limit_(check_slew_limit),
sta_(sta)
{
}
bool
PinSlewLimitSlackLess::operator()(const Pin *pin1,
const Pin *pin2) const
{
const Corner *corner1, *corner2;
const RiseFall *rf1, *rf2;
Slew slew1, slew2;
float limit1, limit2, slack1, slack2;
check_slew_limit_->checkSlew(pin1, corner_, min_max_, true,
corner1, rf1, slew1, limit1, slack1);
check_slew_limit_->checkSlew(pin2, corner_, min_max_, true,
corner2, rf2, slew2, limit2, slack2);
return fuzzyLess(slack1, slack2)
|| (fuzzyEqual(slack1, slack2)
// Break ties for the sake of regression stability.
&& sta_->network()->pinLess(pin1, pin2));
}
////////////////////////////////////////////////////////////////
CheckSlewLimits::CheckSlewLimits(const StaState *sta) :
sta_(sta)
{
}
void
CheckSlewLimits::checkSlewLimits(const Pin *pin,
bool violators,
const Corner *corner,
const MinMax *min_max,
PinSeq &slew_pins,
float &min_slack)
{
const Corner *corner1;
const RiseFall *rf;
Slew slew;
float limit, slack;
checkSlew(pin, corner, min_max, true, corner1, rf, slew, limit, slack);
if (!fuzzyInf(slack)) {
if (violators) {
if (slack < 0.0)
slew_pins.push_back(pin);
}
else {
if (slew_pins.empty()
|| slack < min_slack) {
slew_pins.push_back(pin);
min_slack = slack;
}
}
}
}
void
CheckSlewLimits::checkSlew(const Pin *pin,
const Corner *corner,
const MinMax *min_max,
bool check_clks,
// Return values.
const Corner *&corner1,
const RiseFall *&rf1,
Slew &slew1,
float &limit1,
float &slack1) const
{
corner1 = nullptr;
rf1 = nullptr;
slew1 = 0.0;
limit1 = 0.0;
slack1 = MinMax::min()->initValue();
Vertex *vertex, *bidirect_drvr_vertex;
sta_->graph()->pinVertices(pin, vertex, bidirect_drvr_vertex);
if (vertex)
checkSlew1(pin, vertex, corner, min_max, check_clks,
corner1, rf1, slew1, limit1, slack1);
if (bidirect_drvr_vertex)
checkSlew1(pin, bidirect_drvr_vertex, corner, min_max, check_clks,
corner1, rf1, slew1, limit1, slack1);
}
void
CheckSlewLimits::checkSlew1(const Pin *pin,
const Vertex *vertex,
const Corner *corner,
const MinMax *min_max,
bool check_clks,
// Return values.
const Corner *&corner1,
const RiseFall *&rf1,
Slew &slew1,
float &limit1,
float &slack1) const
{
if (!vertex->isDisabledConstraint()
&& !vertex->isConstant()
&& !sta_->clkNetwork()->isIdealClock(pin)) {
ClockSet clks;
if (check_clks)
clks = clockDomains(vertex);
if (corner)
checkSlew2(pin, vertex, corner, min_max, clks,
corner1, rf1, slew1, limit1, slack1);
else {
for (auto corner : *sta_->corners()) {
checkSlew2(pin, vertex, corner, min_max, clks,
corner1, rf1, slew1, limit1, slack1);
}
}
}
}
void
CheckSlewLimits::checkSlew2(const Pin *pin,
const Vertex *vertex,
const Corner *corner,
const MinMax *min_max,
const ClockSet &clks,
// Return values.
const Corner *&corner1,
const RiseFall *&rf1,
Slew &slew1,
float &limit1,
float &slack1) const
{
for (const RiseFall *rf : RiseFall::range()) {
float limit;
bool exists;
findLimit(pin, corner, rf, min_max, clks,
limit, exists);
if (exists) {
checkSlew3(vertex, corner, rf, min_max, limit,
corner1, rf1, slew1, slack1, limit1);
}
}
}
void
CheckSlewLimits::checkSlew3(const Vertex *vertex,
const Corner *corner,
const RiseFall *rf,
const MinMax *min_max,
float limit,
// Return values.
const Corner *&corner1,
const RiseFall *&rf1,
Slew &slew1,
float &slack1,
float &limit1) const
{
const DcalcAnalysisPt *dcalc_ap = corner->findDcalcAnalysisPt(min_max);
Slew slew = sta_->graph()->slew(vertex, rf, dcalc_ap->index());
float slew2 = delayAsFloat(slew);
float slack = (min_max == MinMax::max())
? limit - slew2 : slew2 - limit;
if (corner1 == nullptr
|| (slack < slack1
// Break ties for the sake of regression stability.
|| (fuzzyEqual(slack, slack1)
&& rf->index() < rf1->index()))) {
corner1 = corner;
rf1 = rf;
slew1 = slew;
slack1 = slack;
limit1 = limit;
}
}
// Return the tightest limit.
void
CheckSlewLimits::findLimit(const Pin *pin,
const Corner *corner,
const RiseFall *rf,
const MinMax *min_max,
const ClockSet &clks,
// Return values.
float &limit,
bool &exists) const
{
const Network *network = sta_->network();
Sdc *sdc = sta_->sdc();
LibertyPort *port = network->libertyPort(pin);
findLimit(port, corner, min_max,
limit, exists);
float limit1;
bool exists1;
if (!clks.empty()) {
// Look for clock slew limits.
bool is_clk = sta_->clkNetwork()->isIdealClock(pin);
for (Clock *clk : clks) {
PathClkOrData clk_data = is_clk ? PathClkOrData::clk : PathClkOrData::data;
sdc->slewLimit(clk, rf, clk_data, min_max,
limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
}
}
if (network->isTopLevelPort(pin)) {
Port *port = network->port(pin);
sdc->slewLimit(port, min_max, limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
InputDrive *drive = sdc->findInputDrive(port);
if (drive) {
for (auto rf : RiseFall::range()) {
const LibertyCell *cell;
const LibertyPort *from_port;
float *from_slews;
const LibertyPort *to_port;
drive->driveCell(rf, min_max, cell, from_port, from_slews, to_port);
if (to_port) {
const LibertyPort *corner_port = to_port->cornerPort(corner, min_max);
corner_port->slewLimit(min_max, limit1, exists1);
if (!exists1
&& corner_port->direction()->isAnyOutput()
&& min_max == MinMax::max())
corner_port->libertyLibrary()->defaultMaxSlew(limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
}
}
}
}
}
void
CheckSlewLimits::findLimit(const LibertyPort *port,
const Corner *corner,
const MinMax *min_max,
// Return values.
float &limit,
bool &exists) const
{
limit = INF;
exists = false;
const Network *network = sta_->network();
Sdc *sdc = sta_->sdc();
float limit1;
bool exists1;
// Default to top ("design") limit.
Cell *top_cell = network->cell(network->topInstance());
sdc->slewLimit(top_cell, min_max,
limit1, exists1);
if (exists1) {
limit = limit1;
exists = true;
}
if (port) {
const LibertyPort *corner_port = port->cornerPort(corner, min_max);
corner_port->slewLimit(min_max, limit1, exists1);
if (!exists1
// default_max_transition only applies to outputs.
&& corner_port->direction()->isAnyOutput()
&& min_max == MinMax::max())
corner_port->libertyLibrary()->defaultMaxSlew(limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
}
}
ClockSet
CheckSlewLimits::clockDomains(const Vertex *vertex) const
{
ClockSet clks;
VertexPathIterator path_iter(const_cast<Vertex*>(vertex), sta_);
while (path_iter.hasNext()) {
Path *path = path_iter.next();
const Clock *clk = path->clock(sta_);
if (clk)
clks.insert(const_cast<Clock*>(clk));
}
return clks;
}
////////////////////////////////////////////////////////////////
PinSeq
CheckSlewLimits::checkSlewLimits(const Net *net,
bool violators,
const Corner *corner,
const MinMax *min_max)
{
const Network *network = sta_->network();
PinSeq slew_pins;
float min_slack = MinMax::min()->initValue();
if (net) {
NetPinIterator *pin_iter = network->pinIterator(net);
while (pin_iter->hasNext()) {
const Pin *pin = pin_iter->next();
checkSlewLimits(pin, violators, corner, min_max, slew_pins, min_slack);
}
delete pin_iter;
}
else {
LeafInstanceIterator *inst_iter = network->leafInstanceIterator();
while (inst_iter->hasNext()) {
const Instance *inst = inst_iter->next();
checkSlewLimits(inst, violators,corner, min_max, slew_pins, min_slack);
}
delete inst_iter;
// Check top level ports.
checkSlewLimits(network->topInstance(), violators, corner, min_max,
slew_pins, min_slack);
}
sort(slew_pins, PinSlewLimitSlackLess(corner, min_max, this, sta_));
// Keep the min slack pin unless all violators or net pins.
if (!slew_pins.empty() && !violators && net == nullptr)
slew_pins.resize(1);
return slew_pins;
}
void
CheckSlewLimits::checkSlewLimits(const Instance *inst,
bool violators,
const Corner *corner,
const MinMax *min_max,
PinSeq &slew_pins,
float &min_slack)
{
const Network *network = sta_->network();
InstancePinIterator *pin_iter = network->pinIterator(inst);
while (pin_iter->hasNext()) {
Pin *pin = pin_iter->next();
checkSlewLimits(pin, violators, corner, min_max, slew_pins, min_slack);
}
delete pin_iter;
}
} // namespace