dcalc error handling

This commit is contained in:
James Cherry 2020-11-02 17:14:48 -08:00
parent bdd7468774
commit bfb3174784
1 changed files with 97 additions and 89 deletions

View File

@ -96,7 +96,7 @@ findRoot(void (*func)(void *state, double x, double &y, double &dy),
double x_tol,
int max_iter,
const char *&error);
static bool
static const char *
newtonRaphson(const int max_iter,
double x[],
const int n,
@ -110,19 +110,17 @@ newtonRaphson(const int max_iter,
double **fjac,
int *index,
double *p,
double *scale,
const char *&error);
double *scale);
static void
luSolve(double **a,
const int size,
const int *index,
double b[]);
static bool
static const char *
luDecomp(double **a,
const int size,
int *index,
double *scale,
const char *&error);
double *scale);
////////////////////////////////////////////////////////////////
@ -167,7 +165,7 @@ public:
protected:
// Find driver parameters t0, delta_t, Ceff.
bool findDriverParams(double &ceff);
const char *findDriverParams(double ceff);
void gateCapDelaySlew(double cl,
double &delay,
double &slew);
@ -191,10 +189,10 @@ protected:
void showX();
void showFvec();
void showJacobian();
bool findDriverDelaySlew(double &delay,
double &slew);
bool findVoCrossing(double vth,
double &t);
const char *findDriverDelaySlew(double &delay,
double &slew);
double findVoCrossing(double vth,
const char *&error);
void showVo();
bool findVlCrossing(double vth,
double &t);
@ -335,21 +333,23 @@ DmpAlg::init(const LibertyLibrary *drvr_library,
}
// Find Ceff, delta_t and t0 for the driver.
// Caller must initialize/retrieve x_[DmpParam::ceff] because
// order 2 eqns don't have a ceff eqn.
// Return true if successful.
bool
DmpAlg::findDriverParams(double &ceff)
// Return error msg on failure.
const char *
DmpAlg::findDriverParams(double ceff)
{
x_[DmpParam::ceff] = ceff;
double t_vth, t_vl, slew;
gateDelays(ceff, t_vth, t_vl, slew);
double dt = slew / (vh_ - vl_);
double t0 = t_vth + log(1.0 - vth_) * rd_ * ceff - vth_ * dt;
x_[DmpParam::dt] = dt;
x_[DmpParam::t0] = t0;
const char *nr_error;
if (newtonRaphson(100, x_, nr_order_, driver_param_tol, evalDmpEqnsState,
this, fvec_, fjac_, index_, p_, scale_, nr_error)) {
const char *error = newtonRaphson(100, x_, nr_order_, driver_param_tol,
evalDmpEqnsState,
this, fvec_, fjac_, index_, p_, scale_);
if (error)
return error;
else {
t0_ = x_[DmpParam::t0];
dt_ = x_[DmpParam::dt];
debugPrint3(debug_, "delay_calc", 3, " t0 = %s dt = %s ceff = %s\n",
@ -358,11 +358,7 @@ DmpAlg::findDriverParams(double &ceff)
units_->capacitanceUnit()->asString(x_[DmpParam::ceff]));
if (debug_->check("delay_calc", 4))
showVo();
return true;
}
else {
fail(nr_error);
return false;
return nullptr;
}
}
@ -429,14 +425,18 @@ DmpAlg::dy(double t,
double t0,
double dt,
double cl,
// Return values.
double &dydt0,
double &dyddt,
double &dydcl)
{
double t1 = t - t0;
#if 0
if (t1 <= 0.0)
dydt0 = dyddt = dydcl = 0.0;
else if (t1 <= dt) {
else
#endif
if (t1 <= dt) {
dydt0 = -y0dt(t1, cl) / dt;
dyddt = -y0(t1, cl) / (dt * dt);
dydcl = y0dcl(t1, cl) / dt;
@ -492,36 +492,34 @@ DmpAlg::showJacobian()
}
}
// Return true if successful.
bool
// Return error msg on failure.
const char *
DmpAlg::findDriverDelaySlew(double &delay,
double &slew)
{
double tl, th;
if (findVoCrossing(vth_, delay)
&& findVoCrossing(vl_, tl)
&& findVoCrossing(vh_, th)) {
slew = (th - tl) / slew_derate_;
return true;
}
else
return false;
const char *error = nullptr;
delay = findVoCrossing(vth_, error);
if (error)
return error;
double tl = findVoCrossing(vl_, error);
if (error)
return error;
double th = findVoCrossing(vh_, error);
if (error)
return error;
slew = (th - tl) / slew_derate_;
return nullptr;
}
// Find t such that vo(t)=v.
// Return true if successful.
bool
double
DmpAlg::findVoCrossing(double vth,
double &t)
const char *&error)
{
v_cross_ = vth;
double ub = voCrossingUpperBound();
const char *error;
t = findRoot(evalVoEqns, this, t0_, ub, vth_time_tol, find_root_max_iter,
error);
if (error)
fail(error);
return (error == nullptr);
return findRoot(evalVoEqns, this, t0_, ub, vth_time_tol, find_root_max_iter, error);
}
static void
@ -698,12 +696,12 @@ DmpAlg::fail(const char *reason)
{
// Allow only failures to be reported with a unique debug flag.
if (debug_->check("delay_calc", 1) || debug_->check("delay_calc_dmp", 1))
debug_->print("delay_calc: DMP failed - %s c2=%s rpi=%s c1=%s\n",
debug_->print("delay_calc: DMP failed - %s c2=%s rpi=%s c1=%s rd=%s\n",
reason,
units_->capacitanceUnit()->asString(c2_),
units_->resistanceUnit()->asString(rpi_),
units_->capacitanceUnit()->asString(c1_));
units_->capacitanceUnit()->asString(c1_),
UNITS_->resistanceUnit()->asString(rd_));
}
////////////////////////////////////////////////////////////////
@ -846,7 +844,7 @@ public:
virtual double voCrossingUpperBound();
private:
bool findDriverParamsPi();
const char *findDriverParamsPi();
virtual double v0(double t);
virtual double dv0dt(double t);
double ipiIceff(double t0,
@ -930,7 +928,14 @@ void
DmpPi::gateDelaySlew(double &delay,
double &slew)
{
if (findDriverParamsPi()) {
const char *error = findDriverParamsPi();
if (error) {
fail(error);
// Driver calculation failed - use Ceff=c1+c2.
ceff_ = c1_ + c2_;
gateCapDelaySlew(ceff_, delay, slew);
}
else {
ceff_ = x_[DmpParam::ceff];
driver_valid_ = true;
double table_slew;
@ -940,25 +945,25 @@ DmpPi::gateDelaySlew(double &delay,
// Vo slew is more accurate than table
// (-8% max, -3% avg vs -32% max, -12% avg).
// Need Vo delay to measure load wire delay waveform.
if (!findDriverDelaySlew(vo_delay_, slew))
// Fall back to table slew if findDriverDelaySlew fails.
const char *error = findDriverDelaySlew(vo_delay_, slew);
if (error) {
fail(error);
// Fall back to table slew.
slew = table_slew;
}
else {
// Driver calculation failed - use Ceff=c1+c2.
ceff_ = c1_ + c2_;
gateCapDelaySlew(ceff_, delay, slew);
}
}
// Save for wire delay calc.
gate_slew_ = slew;
}
bool
const char *
DmpPi::findDriverParamsPi()
{
double ceff = c1_ + c2_;
x_[DmpParam::ceff] = ceff;
return findDriverParams(x_[DmpParam::ceff]);
const char *error;
error = findDriverParams(c2_ + c1_);
if (error)
error = findDriverParams(c2_);
return error;
}
// Given x_ as a vector of input parameters, fill fvec_ with the
@ -1222,11 +1227,23 @@ void
DmpZeroC2::gateDelaySlew(double &delay,
double &slew)
{
driver_valid_ = findDriverParams(c1_);
#if 0
// Not converging to a reasonable solution. set_load10
const char *error = findDriverParams(c1_);
ceff_ = c1_;
if (!findDriverDelaySlew(delay, slew))
// Fall back to table slew if findDriverDelaySlew fails.
driver_valid_ = (error == nullptr);
if (error == nullptr)
error = findDriverDelaySlew(delay, slew);
if (error) {
fail(error);
// Fall back to table slew.
gateCapDelaySlew(ceff_, delay, slew);
}
vo_delay_ = delay;
gate_slew_ = slew;
#endif
ceff_ = c1_;
gateCapDelaySlew(ceff_, delay, slew);
vo_delay_ = delay;
gate_slew_ = slew;
}
@ -1340,8 +1357,8 @@ findRoot(void (*func)(void *state, double x, double &y, double &dy),
// Newton-Raphson iteration to find zeros of a function.
// x_tol is percentage that all changes in x must be less than (1.0 = 100%).
// Eval(state) is called to fill fvec and fjac (returns false if fails).
// Return true if successful.
static bool
// Return error msg on failure.
static const char *
newtonRaphson(const int max_iter,
double x[],
const int size,
@ -1353,20 +1370,19 @@ newtonRaphson(const int max_iter,
double **fjac,
int *index,
double *p,
double *scale,
const char *&error)
double *scale)
{
for (int k = 0; k < max_iter; k++) {
if (!eval(state)) {
error = "Newton-Raphson eval failed";
return false;
}
if (!eval(state))
return "Newton-Raphson eval failed";
for (int i = 0; i < size; i++)
// Right-hand side of linear equations.
p[i] = -fvec[i];
const char *lu_error;
if (luDecomp(fjac, size, index, scale, lu_error)) {
const char *error = luDecomp(fjac, size, index, scale);
if (error)
return error;
else {
luSolve(fjac, size, index, p);
bool all_under_x_tol = true;
@ -1376,15 +1392,10 @@ newtonRaphson(const int max_iter,
x[i] += p[i];
}
if (all_under_x_tol)
return true;
}
else {
error = lu_error;
return false;
return nullptr;
}
}
error = "Newton-Raphson max iterations exceeded";
return false;
return "Newton-Raphson max iterations exceeded";
}
// luDecomp, luSolve based on MatClass from C. R. Birchenhall,
@ -1398,15 +1409,14 @@ newtonRaphson(const int max_iter,
//
// Replaces a[0..size-1][0..size-1] by the LU decomposition.
// index[0..size-1] is an output vector of the row permutations.
// Return true if successful.
bool
// Return error msg on failure.
const char *
luDecomp(double **a,
const int size,
int *index,
// Temporary supplied by caller.
// scale stores the implicit scaling of each row.
double *scale,
const char *&error)
double *scale)
{
// Find implicit scaling factors.
for (int i = 0; i < size; i++) {
@ -1416,10 +1426,8 @@ luDecomp(double **a,
if (temp > big)
big = temp;
}
if (big == 0.0) {
error = "LU decomposition: no non-zero row element";
return false;
}
if (big == 0.0)
return "LU decomposition: no non-zero row element";
scale[i] = 1.0 / big;
}
int size_1 = size - 1;
@ -1469,7 +1477,7 @@ luDecomp(double **a,
a[i][j] *= pivot;
}
}
return true;
return nullptr;
}
// Solves the set of size linear equations a*x=b, assuming A is LU form