OpenSTA/dcalc/DmpDelayCalc.cc

412 lines
12 KiB
C++
Raw Normal View History

2018-09-28 17:54:21 +02:00
// OpenSTA, Static Timing Analyzer
2019-01-01 21:26:11 +01:00
// Copyright (c) 2019, Parallax Software, Inc.
2018-09-28 17:54:21 +02:00
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include "Machine.hh"
#include "TableModel.hh"
#include "TimingArc.hh"
#include "Liberty.hh"
#include "Sdc.hh"
#include "Parasitics.hh"
#include "DcalcAnalysisPt.hh"
#include "GraphDelayCalc.hh"
#include "DmpCeff.hh"
#include "DmpDelayCalc.hh"
namespace sta {
// PiElmore parasitic delay calculator using Dartu/Menezes/Pileggi
// effective capacitance and elmore delay.
class DmpCeffElmoreDelayCalc : public DmpCeffDelayCalc
{
public:
DmpCeffElmoreDelayCalc(StaState *sta);
virtual ArcDelayCalc *copy();
virtual void gateDelay(const LibertyCell *drvr_cell,
TimingArc *arc,
const Slew &in_slew,
float load_cap,
Parasitic *drvr_parasitic,
float related_out_cap,
const Pvt *pvt,
const DcalcAnalysisPt *dcalc_ap,
// Return values.
ArcDelay &gate_,
Slew &drvr_slew);
virtual void loadDelay(const Pin *load_pin,
ArcDelay &wire_delay,
Slew &load_slew);
};
ArcDelayCalc *
makeDmpCeffElmoreDelayCalc(StaState *sta)
{
return new DmpCeffElmoreDelayCalc(sta);
}
DmpCeffElmoreDelayCalc::DmpCeffElmoreDelayCalc(StaState *sta) :
DmpCeffDelayCalc(sta)
{
}
ArcDelayCalc *
DmpCeffElmoreDelayCalc::copy()
{
return new DmpCeffElmoreDelayCalc(this);
}
void
DmpCeffElmoreDelayCalc::gateDelay(const LibertyCell *drvr_cell,
TimingArc *arc,
const Slew &in_slew,
float load_cap,
Parasitic *drvr_parasitic,
float related_out_cap,
const Pvt *pvt,
const DcalcAnalysisPt *dcalc_ap,
// Return values.
ArcDelay &gate_delay,
Slew &drvr_slew)
{
DmpCeffDelayCalc::gateDelay(drvr_cell, arc, in_slew,
load_cap, drvr_parasitic, related_out_cap,
pvt, dcalc_ap,
gate_delay, drvr_slew);
}
void
DmpCeffElmoreDelayCalc::loadDelay(const Pin *load_pin,
ArcDelay &wire_delay,
Slew &load_slew)
{
ArcDelay wire_delay1 = 0.0;
Slew load_slew1 = drvr_slew_;
bool elmore_exists = false;
float elmore = 0.0;
if (drvr_parasitic_)
parasitics_->findElmore(drvr_parasitic_, load_pin, elmore, elmore_exists);
if (elmore_exists) {
if (input_port_) {
// Input port with no external driver.
if (parasitics_->isReducedParasiticNetwork(drvr_parasitic_))
dspfWireDelaySlew(load_pin, elmore, wire_delay1, load_slew1);
else {
// The elmore delay on an input port is used for the wire
// delay and the load slew is the same as the driver slew.
wire_delay1 = elmore;
load_slew1 = drvr_slew_;
}
}
else
loadDelaySlew(load_pin, elmore, wire_delay1, load_slew1);
}
thresholdAdjust(load_pin, wire_delay1, load_slew1);
wire_delay = wire_delay1;
load_slew = load_slew1 * multi_drvr_slew_factor_;
}
////////////////////////////////////////////////////////////////
// PiPoleResidue parasitic delay calculator using Dartu/Menezes/Pileggi
// effective capacitance and two poles/residues.
class DmpCeffTwoPoleDelayCalc : public DmpCeffDelayCalc
{
public:
DmpCeffTwoPoleDelayCalc(StaState *sta);
virtual ArcDelayCalc *copy();
virtual void findParasitic(const Pin *drvr_pin,
const TransRiseFall *tr,
const DcalcAnalysisPt *dcalc_ap,
// Return values.
Parasitic *&parasitic,
bool &delete_at_finish);
virtual void inputPortDelay(const Pin *port_pin,
float in_slew,
const TransRiseFall *tr,
Parasitic *parasitic,
const DcalcAnalysisPt *dcalc_ap);
virtual void gateDelay(const LibertyCell *drvr_cell,
TimingArc *arc,
const Slew &in_slew,
float load_cap,
Parasitic *drvr_parasitic,
float related_out_cap,
const Pvt *pvt,
const DcalcAnalysisPt *dcalc_ap,
// Return values.
ArcDelay &gate_delay,
Slew &drvr_slew);
virtual void loadDelay(const Pin *load_pin,
ArcDelay &wire_delay,
Slew &load_slew);
private:
void loadDelay(Parasitic *pole_residue,
double p1,
double k1,
ArcDelay &wire_delay,
Slew &load_slew);
float loadDelay(double vth,
double p1,
double p2,
double k1,
double k2,
double B,
double k1_p1_2,
double k2_p2_2,
double tt,
double y_tt);
bool parasitic_is_pole_residue_;
float vth_;
float vl_;
float vh_;
float slew_derate_;
};
ArcDelayCalc *
makeDmpCeffTwoPoleDelayCalc(StaState *sta)
{
return new DmpCeffTwoPoleDelayCalc(sta);
}
DmpCeffTwoPoleDelayCalc::DmpCeffTwoPoleDelayCalc(StaState *sta) :
DmpCeffDelayCalc(sta),
parasitic_is_pole_residue_(false),
vth_(0.0),
vl_(0.0),
vh_(0.0),
slew_derate_(0.0)
{
}
ArcDelayCalc *
DmpCeffTwoPoleDelayCalc::copy()
{
return new DmpCeffTwoPoleDelayCalc(this);
}
void
DmpCeffTwoPoleDelayCalc::findParasitic(const Pin *drvr_pin,
const TransRiseFall *tr,
const DcalcAnalysisPt *dcalc_ap,
// Return values.
Parasitic *&parasitic,
bool &delete_at_finish)
{
2019-03-13 01:25:53 +01:00
parasitic = nullptr;
2018-09-28 17:54:21 +02:00
delete_at_finish = false;
// set_load has precidence over parasitics.
if (!sdc_->drvrPinHasWireCap(drvr_pin)) {
const ParasiticAnalysisPt *parasitic_ap = dcalc_ap->parasiticAnalysisPt();
const OperatingConditions *op_cond = dcalc_ap->operatingConditions();
const Corner *corner = dcalc_ap->corner();
const MinMax *cnst_min_max = dcalc_ap->constraintMinMax();
// Prefer PiPoleResidue.
parasitic = parasitics_->findPiPoleResidue(drvr_pin, tr, parasitic_ap);
2019-03-13 01:25:53 +01:00
if (parasitic == nullptr) {
2018-09-28 17:54:21 +02:00
Parasitic *parasitic_network =
parasitics_->findParasiticNetwork(drvr_pin, parasitic_ap);
if (parasitic_network)
parasitic = parasitics_->reduceToPiPoleResidue2(parasitic_network,
drvr_pin,
tr, op_cond, corner,
cnst_min_max,
parasitic_ap);
delete_at_finish = true;
}
2019-03-13 01:25:53 +01:00
if (parasitic == nullptr)
2018-09-28 17:54:21 +02:00
parasitic = parasitics_->findPiElmore(drvr_pin, tr, parasitic_ap);
2019-03-13 01:25:53 +01:00
if (parasitic == nullptr)
2018-09-28 17:54:21 +02:00
parasitic = parasitics_->findLumpedElmore(drvr_pin, tr, parasitic_ap);
2019-03-13 01:25:53 +01:00
if (parasitic == nullptr) {
2018-09-28 17:54:21 +02:00
Wireload *wireload = sdc_->wireloadDefaulted(cnst_min_max);
if (wireload) {
float pin_cap, wire_cap, fanout;
bool has_wire_cap;
graph_delay_calc_->netCaps(drvr_pin, tr, dcalc_ap,
pin_cap, wire_cap, fanout, has_wire_cap);
parasitic = parasitics_->estimatePiElmore(drvr_pin, tr, wireload,
fanout, pin_cap,
op_cond, corner,cnst_min_max,
parasitic_ap);
delete_at_finish = true;
}
}
}
}
void
DmpCeffTwoPoleDelayCalc::inputPortDelay(const Pin *port_pin,
float in_slew,
const TransRiseFall *tr,
Parasitic *parasitic,
const DcalcAnalysisPt *dcalc_ap)
{
parasitic_is_pole_residue_ = parasitics_->isPiPoleResidue(parasitic);
DmpCeffDelayCalc::inputPortDelay(port_pin, in_slew, tr, parasitic, dcalc_ap);
}
void
DmpCeffTwoPoleDelayCalc::gateDelay(const LibertyCell *drvr_cell,
TimingArc *arc,
const Slew &in_slew,
float load_cap,
Parasitic *drvr_parasitic,
float related_out_cap,
const Pvt *pvt,
const DcalcAnalysisPt *dcalc_ap,
// Return values.
ArcDelay &gate_delay,
Slew &drvr_slew)
{
parasitic_is_pole_residue_ = parasitics_->isPiPoleResidue(drvr_parasitic);
const LibertyLibrary *drvr_library = drvr_cell->libertyLibrary();
const TransRiseFall *tr = arc->toTrans()->asRiseFall();
vth_ = drvr_library->outputThreshold(tr);
vl_ = drvr_library->slewLowerThreshold(tr);
vh_ = drvr_library->slewUpperThreshold(tr);
slew_derate_ = drvr_library->slewDerateFromLibrary();
DmpCeffDelayCalc::gateDelay(drvr_cell, arc, in_slew,
load_cap, drvr_parasitic,
related_out_cap, pvt, dcalc_ap,
gate_delay, drvr_slew);
}
void
DmpCeffTwoPoleDelayCalc::loadDelay(const Pin *load_pin,
ArcDelay &wire_delay,
Slew &load_slew)
{
// NEED to handle PiElmore parasitic.
ArcDelay wire_delay1 = 0.0;
Slew load_slew1 = drvr_slew_;
Parasitic *pole_residue = 0;
if (parasitic_is_pole_residue_)
pole_residue = parasitics_->findPoleResidue(drvr_parasitic_, load_pin);
if (pole_residue) {
size_t pole_count = parasitics_->poleResidueCount(pole_residue);
if (pole_count >= 1) {
ComplexFloat pole1, residue1;
// Find the 1st (elmore) pole.
parasitics_->poleResidue(pole_residue, 0, pole1, residue1);
if (pole1.imag() == 0.0
&& residue1.imag() == 0.0) {
float p1 = pole1.real();
float k1 = residue1.real();
if (input_port_) {
float elmore = 1.0F / p1;
// Input port with no external driver.
if (parasitics_->isReducedParasiticNetwork(drvr_parasitic_))
dspfWireDelaySlew(load_pin, elmore, wire_delay1, load_slew1);
else {
// For RSPF on an input port the elmore delay is used for the
// wire delay and the load slew is the same as the driver slew.
wire_delay1 = elmore;
load_slew1 = drvr_slew_;
}
}
else {
if (pole_count >= 2)
loadDelay(pole_residue, p1, k1, wire_delay1, load_slew1);
else {
float elmore = 1.0F / p1;
wire_delay1 = elmore;
load_slew1 = drvr_slew_;
}
}
}
}
}
thresholdAdjust(load_pin, wire_delay1, load_slew1);
wire_delay = wire_delay1;
load_slew = load_slew1 * multi_drvr_slew_factor_;
}
void
DmpCeffTwoPoleDelayCalc::loadDelay(Parasitic *pole_residue,
double p1, double k1,
ArcDelay &wire_delay,
Slew &load_slew)
{
ComplexFloat pole2, residue2;
parasitics_->poleResidue(pole_residue, 1, pole2, residue2);
2019-03-13 01:25:53 +01:00
if (!fuzzyZero(drvr_slew_)
2018-09-28 17:54:21 +02:00
&& pole2.imag() == 0.0
&& residue2.imag() == 0.0) {
double p2 = pole2.real();
double k2 = residue2.real();
double k1_p1_2 = k1 / (p1 * p1);
double k2_p2_2 = k2 / (p2 * p2);
double B = k1_p1_2 + k2_p2_2;
// Convert tt to 0:1 range.
float tt = delayAsFloat(drvr_slew_) * slew_derate_ / (vh_ - vl_);
double y_tt = (tt - B + k1_p1_2 * exp(-p1 * tt)
+ k2_p2_2 * exp(-p2 * tt)) / tt;
wire_delay = loadDelay(vth_, p1, p2, k1, k2, B, k1_p1_2, k2_p2_2, tt, y_tt)
- tt * vth_;
float tl = loadDelay(vl_, p1, p2, k1, k2, B, k1_p1_2, k2_p2_2, tt, y_tt);
float th = loadDelay(vh_, p1, p2, k1, k2, B, k1_p1_2, k2_p2_2, tt, y_tt);
load_slew = (th - tl) / slew_derate_;
}
}
float
DmpCeffTwoPoleDelayCalc::loadDelay(double vth,
double p1,
double p2,
double k1,
double k2,
double B,
double k1_p1_2,
double k2_p2_2,
double tt,
double y_tt)
{
if (y_tt < vth) {
// t1 > tt
// Initial guess.
double t1 = log(k1 * (exp(p1 * tt) - 1.0) / ((1.0 - vth) * p1 * p1 * tt))/p1;
// Take one newton-raphson step.
double exp_p1_t1 = exp(-p1 * t1);
double exp_p2_t1 = exp(-p2 * t1);
double exp_p1_t1_tt = exp(-p1 * (t1 - tt));
double exp_p2_t1_tt = exp(-p2 * (t1 - tt));
double y_t1 = (tt - k1_p1_2 * (exp_p1_t1_tt - exp_p1_t1)
- k2_p2_2 * (exp_p2_t1_tt - exp_p2_t1)) / tt;
double yp_t1 = (k1 / p1 * (exp_p1_t1_tt - exp_p1_t1)
- k2 / p2 * (exp_p2_t1_tt - exp_p2_t1)) / tt;
double delay = t1 - (y_t1 - vth) / yp_t1;
return static_cast<float>(delay);
}
else {
// t1 < tt
// Initial guess based on y(tt).
double t1 = vth * tt / y_tt;
// Take one newton-raphson step.
double exp_p1_t1 = exp(-p1 * t1);
double exp_p2_t1 = exp(-p2 * t1);
double y_t1 = (t1 - B + k1_p1_2 * exp_p1_t1
+ k2_p2_2 * exp_p1_t1) / tt;
double yp_t1 = (1 - k1 / p1 * exp_p1_t1
- k2 / p2 * exp_p2_t1) / tt;
double delay = t1 - (y_t1 - vth) / yp_t1;
return static_cast<float>(delay);
}
}
} // namespace