OpenSTA/search/WriteSpice.cc

928 lines
25 KiB
C++
Raw Normal View History

2019-01-01 21:25:25 +01:00
// OpenSTA, Static Timing Analyzer
2020-03-07 03:50:37 +01:00
// Copyright (c) 2020, Parallax Software, Inc.
2019-01-01 21:25:25 +01:00
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#include <string>
#include <iostream>
#include <fstream>
#include <regex>
#include "Machine.hh"
#include "Debug.hh"
#include "Error.hh"
#include "Report.hh"
#include "StringUtil.hh"
#include "FuncExpr.hh"
#include "Liberty.hh"
#include "TimingArc.hh"
#include "Network.hh"
#include "Graph.hh"
#include "Sdc.hh"
#include "DcalcAnalysisPt.hh"
#include "Parasitics.hh"
#include "PathAnalysisPt.hh"
#include "Path.hh"
#include "PathRef.hh"
#include "PathExpanded.hh"
#include "StaState.hh"
#include "WriteSpice.hh"
namespace sta {
using std::string;
using std::ofstream;
using std::ifstream;
typedef Vector<string> StringVector;
typedef Map<string, StringVector*> CellSpicePortNames;
typedef int Stage;
typedef Map<ParasiticNode*, int> ParasiticNodeMap;
void
split(const string &text,
const string &delims,
// Return values.
StringVector &tokens);
void
streamPrint(ofstream &stream,
const char *fmt,
...) __attribute__((format (printf, 2, 3)));
////////////////////////////////////////////////////////////////
class WriteSpice : public StaState
{
public:
WriteSpice(Path *path,
const char *spice_filename,
const char *subckts_filename,
const char *lib_subckts_filename,
const char *models_filename,
const StaState *sta);
~WriteSpice();
void writeSpice();;
private:
void writeHeader();
void writeStageInstances();
void writeInputSource();
void writeStageSubckts();
void writeInputStage(Stage stage);
void writeMeasureStmts();
void writeGateStage(Stage stage);
void writeStageVoltageSources(LibertyCell *cell,
StringVector *spice_port_names,
const char *inst_name,
LibertyPort *from_port,
LibertyPort *drvr_port);
void writeStageParasitics(Stage stage);
void writeSubckts();
void findPathCellnames(// Return values.
StringSet &path_cell_names);
void recordSpicePortNames(const char *cell_name,
StringVector &tokens);
float pgPortVoltage(const char *pg_port_name,
LibertyCell *cell);
float pgPortVoltage(LibertyPgPort *pg_port);
float maxTime();
const char *nodeName(ParasiticNode *node);
void initNodeMap(const char *net_name);
// Stage "accessors".
// Internally a stage index from stageFirst() to stageLast()
// is turned into an index into path_expanded_.
Stage stageFirst();
Stage stageLast();
string stageName(Stage stage);
int stageGateInputPathIndex(Stage stage);
int stageDrvrPathIndex(Stage stage);
int stageLoadPathIndex(Stage stage);
PathRef *stageGateInputPath(Stage stage);
PathRef *stageDrvrPath(Stage stage);
PathRef *stageLoadPath(Stage stage);
TimingArc *stageGateArc(Stage stage);
TimingArc *stageWireArc(Stage stage);
Edge *stageGateEdge(Stage stage);
Edge *stageWireEdge(Stage stage);
Pin *stageInputPin(Stage stage);
Pin *stageDrvrPin(Stage stage);
Pin *stageLoadPin(Stage stage);
const char *stageInputPinName(Stage stage);
const char *stageDrvrPinName(Stage stage);
const char *stageLoadPinName(Stage stage);
Path *path_;
const char *spice_filename_;
const char *subckts_filename_;
const char *lib_subckts_filename_;
const char *models_filename_;
ofstream spice_stream_;
PathExpanded path_expanded_;
CellSpicePortNames cell_spice_port_names_;
ParasiticNodeMap node_map_;
int next_node_index_;
const char *net_name_;
// Resistance to use to simulate a short circuit between spice nodes.
static const float short_ckt_resistance_;
};
////////////////////////////////////////////////////////////////
class SubcktEndsMissing : public StaException
{
public:
SubcktEndsMissing(const char *cell_name,
const char *subckt_filename);;
const char *what() const throw();
protected:
string what_;
};
SubcktEndsMissing::SubcktEndsMissing(const char *cell_name,
const char *subckt_filename)
{
what_ = "Error: spice subckt for cell ";
what_ += cell_name;
what_ += " missing .ends in ";
what_ += subckt_filename;
}
const char *
SubcktEndsMissing::what() const throw()
{
return what_.c_str();
}
////////////////////////////////////////////////////////////////
void
writeSpice (Path *path,
const char *spice_filename,
const char *subckts_filename,
const char *lib_subckts_filename,
const char *models_filename,
StaState *sta)
{
WriteSpice writer(path, spice_filename, subckts_filename,
lib_subckts_filename, models_filename, sta);
writer.writeSpice();
}
const float WriteSpice::short_ckt_resistance_ = .0001;
WriteSpice::WriteSpice(Path *path,
const char *spice_filename,
const char *subckts_filename,
const char *lib_subckts_filename,
const char *models_filename,
const StaState *sta) :
StaState(sta),
path_(path),
spice_filename_(spice_filename),
subckts_filename_(subckts_filename),
lib_subckts_filename_(lib_subckts_filename),
models_filename_(models_filename),
path_expanded_(sta),
net_name_(NULL)
{
}
WriteSpice::~WriteSpice()
{
cell_spice_port_names_.deleteContents();
}
void
WriteSpice::writeSpice()
{
spice_stream_.open(spice_filename_);
if (spice_stream_.is_open()) {
path_expanded_.expand(path_, true);
// Find subckt port names as a side-effect of writeSubckts.
writeSubckts();
writeHeader();
writeStageInstances();
writeInputSource();
writeStageSubckts();
streamPrint(spice_stream_, ".end\n");
spice_stream_.close();
}
else
throw FileNotWritable(spice_filename_);
}
void
WriteSpice::writeHeader()
{
const MinMax *min_max = path_->minMax(this);
const Pvt *pvt = sdc_->operatingConditions(min_max);
if (pvt == NULL)
pvt = network_->defaultLibertyLibrary()->defaultOperatingConditions();
float temp = pvt->temperature();
streamPrint(spice_stream_, ".temp %.1f\n", temp);
streamPrint(spice_stream_, ".include \"%s\"\n", models_filename_);
streamPrint(spice_stream_, ".include \"%s\"\n", subckts_filename_);
float max_time = maxTime();
float time_step = max_time / 1e+3;
streamPrint(spice_stream_, ".tran %.3g %.3g\n\n",
time_step, max_time);
}
float
WriteSpice::maxTime()
{
float end_slew = path_->slew(this);
float max_time = (path_->arrival(this) + end_slew * 2) * 1.5;
return max_time;
}
void
WriteSpice::writeStageInstances()
{
streamPrint(spice_stream_, "*****************\n");
streamPrint(spice_stream_, "* Stage instances\n");
streamPrint(spice_stream_, "*****************\n\n");
for (Stage stage = stageFirst(); stage <= stageLast(); stage++) {
const char *stage_name = stageName(stage).c_str();
if (stage == stageFirst())
streamPrint(spice_stream_, "x%s %s %s %s\n",
stage_name,
stageDrvrPinName(stage),
stageLoadPinName(stage),
stage_name);
else
streamPrint(spice_stream_, "x%s %s %s %s %s\n",
stage_name,
stageInputPinName(stage),
stageDrvrPinName(stage),
stageLoadPinName(stage),
stage_name);
}
streamPrint(spice_stream_, "\n");
}
float
WriteSpice::pgPortVoltage(const char *pg_port_name,
LibertyCell *cell)
{
auto pg_port = cell->findPgPort(pg_port_name);
return pgPortVoltage(pg_port);
}
float
WriteSpice::pgPortVoltage(LibertyPgPort *pg_port)
{
auto cell = pg_port->cell();
auto voltage_name = pg_port->voltageName();
auto lib = cell->libertyLibrary();
float voltage = lib->supplyVoltage(voltage_name);
return voltage;
}
void
WriteSpice::writeInputSource()
{
streamPrint(spice_stream_, "**************\n");
streamPrint(spice_stream_, "* Input source\n");
streamPrint(spice_stream_, "**************\n\n");
Stage input_stage = stageFirst();
streamPrint(spice_stream_, "v1 %s 0 pwl(\n",
stageDrvrPinName(input_stage));
auto wire_arc = stageWireArc(input_stage);
auto load_pin = stageLoadPin(input_stage);
auto cell = network_->libertyCell(network_->instance(load_pin));
auto load_port = network_->libertyPort(load_pin);
const char *pg_gnd_port_name = load_port->relatedGroundPin();
const char *pg_pwr_port_name = load_port->relatedPowerPin();
auto gnd_volt = pgPortVoltage(pg_gnd_port_name, cell);
auto pwr_volt = pgPortVoltage(pg_pwr_port_name, cell);
float volt0, volt1;
if (wire_arc->fromTrans()->asRiseFall() == TransRiseFall::rise()) {
volt0 = gnd_volt;
volt1 = pwr_volt;
}
else {
volt0 = pwr_volt;
volt1 = gnd_volt;
}
float time0 = .1e-9;
float time1 = .2e-9;
streamPrint(spice_stream_, "+%.3e %.3e\n", 0.0, volt0);
streamPrint(spice_stream_, "+%.3e %.3e\n", time0, volt0);
streamPrint(spice_stream_, "+%.3e %.3e\n", time1, volt1);
streamPrint(spice_stream_, "+%.3e %.3e\n", maxTime(), volt1);
streamPrint(spice_stream_, "+)\n\n");
}
void
WriteSpice::writeMeasureStmts()
{
streamPrint(spice_stream_, "********************\n");
streamPrint(spice_stream_, "* Measure statements\n");
streamPrint(spice_stream_, "********************\n\n");
}
void
WriteSpice::writeStageSubckts()
{
streamPrint(spice_stream_, "***************\n");
streamPrint(spice_stream_, "* Stage subckts\n");
streamPrint(spice_stream_, "***************\n\n");
for (Stage stage = stageFirst(); stage <= stageLast(); stage++) {
if (stage == stageFirst())
writeInputStage(stage);
else
writeGateStage(stage);
}
}
// Input port to first gate input.
void
WriteSpice::writeInputStage(Stage stage)
{
// Input arc.
// External driver not handled.
auto drvr_pin_name = stageDrvrPinName(stage);
auto load_pin_name = stageLoadPinName(stage);
streamPrint(spice_stream_, ".subckt %s %s %s\n",
stageName(stage).c_str(),
drvr_pin_name,
load_pin_name);
writeStageParasitics(stage);
streamPrint(spice_stream_, ".ends\n\n");
}
// Gate and load parasitics.
void
WriteSpice::writeGateStage(Stage stage)
{
auto input_pin = stageInputPin(stage);
auto input_pin_name = stageInputPinName(stage);
auto drvr_pin = stageDrvrPin(stage);
auto drvr_pin_name = stageDrvrPinName(stage);
auto load_pin_name = stageLoadPinName(stage);
streamPrint(spice_stream_, ".subckt stage%d %s %s %s\n",
stage,
input_pin_name,
drvr_pin_name,
load_pin_name);
Instance *inst = network_->instance(input_pin);
const char *inst_name = network_->pathName(inst);
LibertyCell *cell = network_->libertyCell(inst);
const char *cell_name = cell->name();
auto spice_port_names = cell_spice_port_names_[cell_name];
// Instance subckt call.
streamPrint(spice_stream_, "x%s", inst_name);
StringVector::Iterator port_iter(spice_port_names);
while (port_iter.hasNext()) {
const char *subckt_port_name = port_iter.next().c_str();
auto pin = network_->findPin(inst, subckt_port_name);
auto pg_port = cell->findPgPort(subckt_port_name);
const char *pin_name;
if (pin) {
pin_name = network_->pathName(pin);
streamPrint(spice_stream_, " %s", pin_name);
}
else if (pg_port)
streamPrint(spice_stream_, " %s/%s", inst_name, subckt_port_name);
}
streamPrint(spice_stream_, " %s\n", cell_name);
writeStageVoltageSources(cell, spice_port_names,
inst_name,
network_->libertyPort(input_pin),
network_->libertyPort(drvr_pin));
writeStageParasitics(stage);
streamPrint(spice_stream_, ".ends\n\n");
}
typedef Map<LibertyPort*, LogicValue> LibertyPortLogicValues;
// Find the logic values for expression inputs to enable paths from_port.
void
sensitizationValues(FuncExpr *expr,
LibertyPort *from_port,
// Return values.
LibertyPortLogicValues &port_values)
{
switch (expr->op()) {
case FuncExpr::op_port: {
break;
}
case FuncExpr::op_not: {
sensitizationValues(expr->left(), from_port, port_values);
break;
}
case FuncExpr::op_or: {
FuncExpr *left = expr->left();
FuncExpr *right = expr->right();
if (left->port() == from_port
&& right->op() == FuncExpr::op_port)
port_values[right->port()] = logic_zero;
else if (right->port() == from_port
&& left->op() == FuncExpr::op_port)
port_values[left->port()] = logic_zero;
break;
}
case FuncExpr::op_and: {
FuncExpr *left = expr->left();
FuncExpr *right = expr->right();
if (left->port() == from_port
&& right->op() == FuncExpr::op_port)
port_values[right->port()] = logic_one;
else if (right->port() == from_port
&& left->op() == FuncExpr::op_port)
port_values[left->port()] = logic_one;
break;
}
case FuncExpr::op_xor: {
// Need to know timing arc sense to get this right.
FuncExpr *left = expr->left();
FuncExpr *right = expr->right();
if (left->port() == from_port
&& right->op() == FuncExpr::op_port)
port_values[right->port()] = logic_zero;
else if (right->port() == from_port
&& left->op() == FuncExpr::op_port)
port_values[left->port()] = logic_zero;
break;
}
case FuncExpr::op_one:
case FuncExpr::op_zero:
break;
}
}
// Power/ground and input voltage sources.
void
WriteSpice::writeStageVoltageSources(LibertyCell *cell,
StringVector *spice_port_names,
const char *inst_name,
LibertyPort *from_port,
LibertyPort *drvr_port)
{
auto from_port_name = from_port->name();
auto drvr_port_name = drvr_port->name();
LibertyLibrary *lib = cell->libertyLibrary();
LibertyPortLogicValues port_values;
sensitizationValues(drvr_port->function(), from_port, port_values);
int volt_source = 1;
debugPrint1(debug_, "write_spice", 2, "subckt %s\n", cell->name());
StringVector::Iterator port_iter(spice_port_names);
while (port_iter.hasNext()) {
auto subckt_port_name = port_iter.next().c_str();
auto pg_port = cell->findPgPort(subckt_port_name);
debugPrint2(debug_, "write_spice", 2, " port %s%s\n",
subckt_port_name,
pg_port ? " pwr/gnd" : "");
if (pg_port) {
auto voltage = pgPortVoltage(pg_port);
streamPrint(spice_stream_, "v%d %s/%s 0 %.3f\n",
volt_source,
inst_name, subckt_port_name,
voltage);
volt_source++;
} else if (!(stringEq(subckt_port_name, from_port_name)
|| stringEq(subckt_port_name, drvr_port_name))) {
// Input voltage to sensitize path from gate input to output.
LibertyPort *port = cell->findLibertyPort(subckt_port_name);
if (port) {
const char *pg_port_name = NULL;
bool port_has_value;
LogicValue port_value;
port_values.findKey(port, port_value, port_has_value);
if (port_has_value) {
switch (port_value) {
case logic_zero:
pg_port_name = port->relatedGroundPin();
break;
case logic_one:
pg_port_name = port->relatedPowerPin();
break;
default:
break;
}
if (pg_port_name) {
auto pg_port = cell->findPgPort(pg_port_name);
if (pg_port) {
auto voltage_name = pg_port->voltageName();
if (voltage_name) {
float voltage = lib->supplyVoltage(voltage_name);
streamPrint(spice_stream_, "v%d %s/%s 0 %.3f\n",
volt_source,
inst_name, subckt_port_name,
voltage);
volt_source++;
}
else
report_->error("port %s %s voltage %s not found,\n",
subckt_port_name,
pg_port_name,
voltage_name);
}
else
report_->error("port %s %s not found,\n",
subckt_port_name,
pg_port_name);
}
}
}
}
}
}
typedef Set<ParasiticDevice*> ParasiticDeviceSet;
typedef Set<ParasiticNode*> ParasiticNodeSet;
void
findParasiticDevicesNodes(ParasiticNode *node,
Parasitics *parasitics,
// Return values.
ParasiticNodeSet &nodes,
ParasiticDeviceSet &devices)
{
nodes.insert(node);
auto device_iter = parasitics->deviceIterator(node);
while (device_iter->hasNext()) {
auto device = device_iter->next();
if (!devices.hasKey(device)) {
devices.insert(device);
auto other_node = parasitics->otherNode(device, node);
findParasiticDevicesNodes(other_node, parasitics, nodes, devices);
}
}
delete device_iter;
}
void
WriteSpice::writeStageParasitics(Stage stage)
{
auto drvr_path = stageDrvrPath(stage);
auto drvr_pin = stageDrvrPin(stage);
auto load_pin = stageLoadPin(stage);
auto dcalc_ap = drvr_path->dcalcAnalysisPt(this);
auto parasitic_ap = dcalc_ap->parasiticAnalysisPt();
auto parasitic = parasitics_->findParasiticNetwork(drvr_pin, parasitic_ap);
int resistor_index = 1;
int cap_index = 1;
if (parasitic) {
Net *net = network_->net(drvr_pin);
auto net_name =
net ? network_->pathName(net) : network_->pathName(drvr_pin);
initNodeMap(net_name);
streamPrint(spice_stream_, "* Net %s\n", net_name);
auto node = parasitics_->findNode(parasitic, drvr_pin);
ParasiticNodeSet nodes;
ParasiticDeviceSet devices;
findParasiticDevicesNodes(node, parasitics_, nodes, devices);
ParasiticDeviceSet::Iterator device_iter(devices);
while (device_iter.hasNext()) {
auto device = device_iter.next();
auto resistance = parasitics_->value(device, parasitic_ap);
if (parasitics_->isResistor(device)) {
ParasiticNode *node1, *node2;
parasitics_->resistorNodes(device, node1, node2);
streamPrint(spice_stream_, "R%d %s %s %.3e\n",
resistor_index,
nodeName(node1),
nodeName(node2),
resistance);
resistor_index++;
}
else if (parasitics_->isCouplingCap(device)) {
}
}
ParasiticNodeSet::Iterator node_iter(nodes);
while (node_iter.hasNext()) {
auto node = node_iter.next();
auto cap = parasitics_->nodeGndCap(node, parasitic_ap);
streamPrint(spice_stream_, "C%d %s 0 %.3e\n",
cap_index,
nodeName(node),
cap);
cap_index++;
}
}
else
streamPrint(spice_stream_, "R1 %s %s %.3e\n",
network_->pathName(drvr_pin),
network_->pathName(load_pin),
short_ckt_resistance_);
}
void
WriteSpice::initNodeMap(const char *net_name)
{
stringDelete(net_name_);
node_map_.clear();
next_node_index_ = 1;
net_name_ = stringCopy(net_name);
}
const char *
WriteSpice::nodeName(ParasiticNode *node)
{
auto pin = parasitics_->connectionPin(node);
if (pin)
return parasitics_->name(node);
else {
int node_index;
bool node_index_exists;
node_map_.findKey(node, node_index, node_index_exists);
if (!node_index_exists) {
node_index = next_node_index_++;
node_map_[node] = node_index;
}
return stringPrintTmp(strlen(net_name_) + 10, "%s/%d",
net_name_, node_index);
}
}
////////////////////////////////////////////////////////////////
// Copy the subckt definition from lib_subckts_filename for
// each cell in path to path_subckts_filename.
void
WriteSpice::writeSubckts()
{
StringSet path_cell_names;
findPathCellnames(path_cell_names);
ifstream lib_subckts_stream(lib_subckts_filename_);
if (lib_subckts_stream.is_open()) {
ofstream subckts_stream(subckts_filename_);
if (subckts_stream.is_open()) {
string line;
while (getline(lib_subckts_stream, line)) {
// .subckt <cell_name> [args..]
StringVector tokens;
split(line, " \t", tokens);
if (tokens.size() >= 2
&& stringEqual(tokens[0].c_str(), ".subckt")) {
const char *cell_name = tokens[1].c_str();
if (path_cell_names.hasKey(cell_name)) {
subckts_stream << line << "\n";
bool found_ends = false;
while (getline(lib_subckts_stream, line)) {
subckts_stream << line << "\n";
if (stringEqual(line.c_str(), ".ends")) {
subckts_stream << "\n";
found_ends = true;
break;
}
}
if (!found_ends)
throw SubcktEndsMissing(cell_name, lib_subckts_filename_);
path_cell_names.eraseKey(cell_name);
}
recordSpicePortNames(cell_name, tokens);
}
}
subckts_stream.close();
lib_subckts_stream.close();
if (!path_cell_names.empty()) {
StringSet::Iterator cell_iter(path_cell_names);
report_->error("The following subkcts are missing from %s\n",
lib_subckts_filename_);
while (cell_iter.hasNext()) {
const char *cell_name = cell_iter.next();
report_->printError(" %s\n", cell_name);
}
}
}
else {
lib_subckts_stream.close();
throw FileNotWritable(subckts_filename_);
}
}
else
throw FileNotReadable(lib_subckts_filename_);
}
void
WriteSpice::findPathCellnames(// Return values.
StringSet &path_cell_names)
{
for (Stage stage = stageFirst(); stage <= stageLast(); stage++) {
auto arc = stageGateArc(stage);
if (arc) {
LibertyCell *cell = arc->set()->libertyCell();
if (cell) {
debugPrint1(debug_, "write_spice", 2, "cell %s\n", cell->name());
path_cell_names.insert(cell->name());
}
}
}
}
void
WriteSpice::recordSpicePortNames(const char *cell_name,
StringVector &tokens)
{
auto cell = network_->findLibertyCell(cell_name);
auto spice_port_names = new StringVector;
for (int i = 2; i < tokens.size(); i++) {
const char *port_name = tokens[i].c_str();
auto port = cell->findLibertyPort(port_name);
auto pg_port = cell->findPgPort(port_name);
if (port == NULL && pg_port == NULL)
report_->error("subckt %s port %s has no corresponding liberty port or pg_port.\n",
cell_name, port_name);
spice_port_names->push_back(port_name);
}
cell_spice_port_names_[cell_name] = spice_port_names;
}
////////////////////////////////////////////////////////////////
Stage
WriteSpice::stageFirst()
{
return 1;
}
Stage
WriteSpice::stageLast()
{
return (path_expanded_.size() + 1) / 2;
}
string
WriteSpice::stageName(Stage stage)
{
string name;
stringPrint(name, "stage%d", stage);
return name;
}
int
WriteSpice::stageGateInputPathIndex(Stage stage)
{
return stage * 2 - 3;
}
int
WriteSpice::stageDrvrPathIndex(Stage stage)
{
return stage * 2 - 2;
}
int
WriteSpice::stageLoadPathIndex(Stage stage)
{
return stage * 2 - 1;
}
PathRef *
WriteSpice::stageGateInputPath(Stage stage)
{
int path_index = stageGateInputPathIndex(stage);
return path_expanded_.path(path_index);
}
PathRef *
WriteSpice::stageDrvrPath(Stage stage)
{
int path_index = stageDrvrPathIndex(stage);
return path_expanded_.path(path_index);
}
PathRef *
WriteSpice::stageLoadPath(Stage stage)
{
int path_index = stageLoadPathIndex(stage);
return path_expanded_.path(path_index);
}
TimingArc *
WriteSpice::stageGateArc(Stage stage)
{
int path_index = stageDrvrPathIndex(stage);
if (path_index >= 0)
return path_expanded_.prevArc(path_index);
else
return NULL;
}
TimingArc *
WriteSpice::stageWireArc(Stage stage)
{
int path_index = stageLoadPathIndex(stage);
return path_expanded_.prevArc(path_index);
}
Edge *
WriteSpice::stageGateEdge(Stage stage)
{
PathRef *path = stageGateInputPath(stage);
TimingArc *arc = stageGateArc(stage);
return path->prevEdge(arc, this);
}
Edge *
WriteSpice::stageWireEdge(Stage stage)
{
PathRef *path = stageLoadPath(stage);
TimingArc *arc = stageWireArc(stage);
return path->prevEdge(arc, this);
}
Pin *
WriteSpice::stageInputPin(Stage stage)
{
PathRef *path = stageGateInputPath(stage);
return path->pin(this);
}
Pin *
WriteSpice::stageDrvrPin(Stage stage)
{
PathRef *path = stageDrvrPath(stage);
return path->pin(this);
}
Pin *
WriteSpice::stageLoadPin(Stage stage)
{
PathRef *path = stageLoadPath(stage);
return path->pin(this);
}
const char *
WriteSpice::stageInputPinName(Stage stage)
{
const Pin *pin = stageInputPin(stage);
return network_->pathName(pin);
}
const char *
WriteSpice::stageDrvrPinName(Stage stage)
{
Pin *pin = stageDrvrPin(stage);
return network_->pathName(pin);
}
const char *
WriteSpice::stageLoadPinName(Stage stage)
{
const Pin *pin = stageLoadPin(stage);
return network_->pathName(pin);
}
////////////////////////////////////////////////////////////////
void
split(const string &text,
const string &delims,
// Return values.
StringVector &tokens)
{
auto start = text.find_first_not_of(delims);
auto end = text.find_first_of(delims, start);
while (end != string::npos) {
tokens.push_back(text.substr(start, end - start));
start = text.find_first_not_of(delims, end);
end = text.find_first_of(delims, start);
}
if (start != string::npos)
tokens.push_back(text.substr(start));
}
// fprintf for c++ streams.
// Yes, I hate formatted output to ostream THAT much.
void
streamPrint(ofstream &stream,
const char *fmt,
...)
{
va_list args;
va_start(args, fmt);
char *result;
vasprintf(&result, fmt, args);
stream << result;
free(result);
va_end(args);
}
} // namespace