OpenSTA/sdc/CycleAccting.hh

96 lines
3.0 KiB
C++
Raw Normal View History

2018-09-28 17:54:21 +02:00
// OpenSTA, Static Timing Analyzer
2019-01-01 21:26:11 +01:00
// Copyright (c) 2019, Parallax Software, Inc.
2018-09-28 17:54:21 +02:00
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
#ifndef STA_CYCLE_ACCTING_H
#define STA_CYCLE_ACCTING_H
#include "DisallowCopyAssign.hh"
#include "MinMax.hh"
#include "StaState.hh"
#include "SdcClass.hh"
#include "TimingRole.hh"
namespace sta {
// Maximum number of cycles we are willing to multiply the period by
// looking for a minimum separation of edges to another clock.
const int large_period_clk_expansion_cycle_count = 1000;
const int small_period_clk_expansion_cycle_count = 101;
class CycleAccting
{
public:
CycleAccting(const ClockEdge *src, const ClockEdge *tgt);
// Fill in required times.
void findDelays(StaState *sta);
// Find delays when source clk edge is the default arrival clock edge
// (from unclocked set_input_delay).
void findDefaultArrivalSrcDelays();
const ClockEdge *src() const { return src_; }
const ClockEdge *target() const { return tgt_; }
float requiredTime(const TimingRole *check_role);
int sourceCycle(const TimingRole *check_role);
int targetCycle(const TimingRole *check_role);
float sourceTimeOffset(const TimingRole *check_role);
float targetTimeOffset(const TimingRole *check_role);
bool maxCyclesExceeded() const { return max_cycles_exceeded_; }
private:
DISALLOW_COPY_AND_ASSIGN(CycleAccting);
void setHoldAccting(int src_cycle,
int tgt_cycle,
float delay,
float req);
void setAccting(TimingRole *role,
int src_cycle,
int tgt_cycle,
float delay,
float req);
void setSetupAccting(int src_cycle,
int tgt_cycle,
float delay,
float req);
void setDefaultSetupAccting(int src_cycle,
int tgt_cycle,
float delay,
float req);
void setDefaultHoldAccting(int src_cycle,
int tgt_cycle,
float delay,
float req);
const ClockEdge *src_;
const ClockEdge *tgt_;
// Setup/hold delay from source to target.
float delay_[TimingRole::index_max + 1];
// Delay from beginning of src_cycle_'th cycle to target edge.
float required_[TimingRole::index_max + 1];
// Source clock cycle offset.
int src_cycle_[TimingRole::index_max + 1];
// Target clock cycle offset.
int tgt_cycle_[TimingRole::index_max + 1];
bool max_cycles_exceeded_;
};
class CycleAcctingLess
{
public:
bool operator()(const CycleAccting *acct1, const CycleAccting *acct2) const;
};
} // namespace
#endif