OpenRAM/compiler/router/router.py

852 lines
31 KiB
Python

import gdsMill
import tech
from contact import contact
import math
import debug
from pin_layout import pin_layout
from vector import vector
from vector3d import vector3d
from globals import OPTS
from pprint import pformat
class router:
"""
A router class to read an obstruction map from a gds and plan a
route on a given layer. This is limited to two layer routes.
It populates blockages on a grid class.
"""
def __init__(self, gds_name=None, module=None):
"""Use the gds file or the cell for the blockages with the top module topName and
layers for the layers to route on
"""
self.gds_name = gds_name
self.module = module
debug.check(not (gds_name and module), "Specify only a GDS file or module")
# If we specified a module instead, write it out to read the gds
# This isn't efficient, but easy for now
if module:
gds_name = OPTS.openram_temp+"temp.gds"
module.gds_write(gds_name)
# Load the gds file and read in all the shapes
self.layout = gdsMill.VlsiLayout(units=tech.GDS["unit"])
self.reader = gdsMill.Gds2reader(self.layout)
self.reader.loadFromFile(gds_name)
self.top_name = self.layout.rootStructureName
# A map of pin names to pin structures
self.pins = {}
# A set of connected pin groups
self.pin_groups = {}
# The corresponding sets (components) of grids for each pin
self.pin_components = {}
# A set of blocked grids
self.blocked_grids = set()
# A list of pin layout shapes that are blocked
self.blockages=[]
# A list of paths that have been "routed"
self.paths = []
# The list of supply rails that may be routed
self.supply_rails = []
# The boundary will determine the limits to the size of the routing grid
self.boundary = self.layout.measureBoundary(self.top_name)
# These must be un-indexed to get rid of the matrix type
self.ll = vector(self.boundary[0][0], self.boundary[0][1])
self.ur = vector(self.boundary[1][0], self.boundary[1][1])
def clear_pins(self):
"""
Convert the routed path to blockages.
Keep the other blockages unchanged.
"""
self.pins = {}
self.pin_groups = {}
self.pin_grids = {}
self.pin_paritals = {}
self.reinit()
def set_top(self,top_name):
""" If we want to route something besides the top-level cell."""
self.top_name = top_name
def get_zindex(self,layer_num):
if layer_num==self.horiz_layer_number:
return 0
else:
return 1
def get_layer(self, zindex):
if zindex==1:
return self.vert_layer_name
elif zindex==0:
return self.horiz_layer_name
else:
debug.error("Invalid zindex {}".format(zindex),-1)
def is_wave(self,path):
"""
Determines if this is a multi-track width wave (True) or a normal route (False)
"""
return len(path[0])>1
def set_layers(self, layers):
"""
Allows us to change the layers that we are routing on. First layer
is always horizontal, middle is via, and last is always
vertical.
"""
self.layers = layers
(self.horiz_layer_name, self.via_layer_name, self.vert_layer_name) = self.layers
self.vert_layer_width = tech.drc["minwidth_{0}".format(self.vert_layer_name)]
self.vert_layer_spacing = tech.drc[str(self.vert_layer_name)+"_to_"+str(self.vert_layer_name)]
self.vert_layer_number = tech.layer[self.vert_layer_name]
self.horiz_layer_width = tech.drc["minwidth_{0}".format(self.horiz_layer_name)]
self.horiz_layer_spacing = tech.drc[str(self.horiz_layer_name)+"_to_"+str(self.horiz_layer_name)]
self.horiz_layer_number = tech.layer[self.horiz_layer_name]
# Contacted track spacing.
via_connect = contact(self.layers, (1, 1))
self.max_via_size = max(via_connect.width,via_connect.height)
self.horiz_track_width = self.max_via_size + self.horiz_layer_spacing
self.vert_track_width = self.max_via_size + self.vert_layer_spacing
# We'll keep horizontal and vertical tracks the same for simplicity.
self.track_width = max(self.horiz_track_width,self.vert_track_width)
debug.info(1,"Track width: "+str(self.track_width))
self.track_widths = [self.track_width] * 2
self.track_factor = [1/self.track_width] * 2
debug.info(1,"Track factor: {0}".format(self.track_factor))
# When we actually create the routes, make them the width of the track (minus 1/2 spacing on each side)
self.layer_widths = [self.track_width - self.horiz_layer_spacing, 1, self.track_width - self.vert_layer_spacing]
def retrieve_pins(self,pin_name):
"""
Retrieve the pin shapes from the layout.
"""
shape_list=self.layout.getAllPinShapesByLabel(str(pin_name))
pin_set = set()
for shape in shape_list:
(name,layer,boundary)=shape
rect = [vector(boundary[0],boundary[1]),vector(boundary[2],boundary[3])]
pin = pin_layout(pin_name, rect, layer)
debug.info(2,"Found pin {}".format(str(pin)))
pin_set.add(pin)
debug.check(len(pin_set)>0,"Did not find any pin shapes for {0}.".format(str(pin_name)))
self.pins[pin_name] = pin_set
def find_pins(self,pin_name):
"""
Finds the pin shapes and converts to tracks.
Pin can either be a label or a location,layer pair: [[x,y],layer].
"""
self.retrieve_pins(pin_name)
self.analyze_pins(pin_name)
self.convert_pins(pin_name)
def find_blockages(self):
"""
Iterate through all the layers and write the obstacles to the routing grid.
This doesn't consider whether the obstacles will be pins or not. They get reset later
if they are not actually a blockage.
"""
for layer in [self.vert_layer_number,self.horiz_layer_number]:
self.retrieve_blockages(layer)
self.convert_blockages()
def reinit(self):
"""
Reset the source and destination pins to start a new routing.
Convert the source/dest pins to blockages.
Convert the routed path to blockages.
Keep the other blockages unchanged.
"""
self.pins = {}
self.pin_groups = {}
self.pin_components = {}
# DO NOT clear the blockages as these don't change
self.rg.reinit()
def translate_coordinates(self, coord, mirr, angle, xyShift):
"""
Calculate coordinates after flip, rotate, and shift
"""
coordinate = []
for item in coord:
x = (item[0]*math.cos(angle)-item[1]*mirr*math.sin(angle)+xyShift[0])
y = (item[0]*math.sin(angle)+item[1]*mirr*math.cos(angle)+xyShift[1])
coordinate += [(x, y)]
return coordinate
def convert_shape_to_units(self, shape):
"""
Scale a shape (two vector list) to user units
"""
unit_factor = [tech.GDS["unit"][0]] * 2
ll=shape[0].scale(unit_factor)
ur=shape[1].scale(unit_factor)
return [ll,ur]
def min_max_coord(self, coord):
"""
Find the lowest and highest corner of a Rectangle
"""
coordinate = []
minx = min(coord[0][0], coord[1][0], coord[2][0], coord[3][0])
maxx = max(coord[0][0], coord[1][0], coord[2][0], coord[3][0])
miny = min(coord[0][1], coord[1][1], coord[2][1], coord[3][1])
maxy = max(coord[0][1], coord[1][1], coord[2][1], coord[3][1])
coordinate += [vector(minx, miny)]
coordinate += [vector(maxx, maxy)]
return coordinate
def get_inertia(self,p0,p1):
"""
Sets the direction based on the previous direction we came from.
"""
# direction (index) of movement
if p0.x!=p1.x:
return 0
elif p0.y!=p1.y:
return 1
else:
# z direction
return 2
def add_path_blockages(self):
"""
Go through all of the past paths and add them as blockages.
This is so we don't have to write/reload the GDS.
"""
for path in self.paths:
for grid in path:
self.rg.set_blocked(grid)
def clear_blockages(self):
"""
Clear all blockages on the grid.
"""
self.rg.clear_blockages()
def set_blockages(self, blockages, value=True):
""" Flag the blockages in the grid """
self.rg.set_blocked(blockages, value)
def set_path_blockages(self,value=True):
""" Flag the paths as blockages """
# These are the paths that have already been routed.
# This adds the initial blockges of the design
for p in self.paths:
p.set_blocked(value)
def get_blockage_tracks(self, ll, ur, z):
debug.info(4,"Converting blockage ll={0} ur={1} z={2}".format(str(ll),str(ur),z))
block_list = []
for x in range(int(ll[0]),int(ur[0])+1):
for y in range(int(ll[1]),int(ur[1])+1):
block_list.append(vector3d(x,y,z))
return set(block_list)
def convert_blockage(self, blockage):
"""
Convert a pin layout blockage shape to routing grid tracks.
"""
# Inflate the blockage by spacing rule
[ll,ur]=self.convert_blockage_to_tracks(blockage.inflate())
zlayer = self.get_zindex(blockage.layer_num)
blockage_tracks = self.get_blockage_tracks(ll,ur,zlayer)
return blockage_tracks
def convert_blockages(self):
""" Convert blockages to grid tracks. """
for blockage in self.blockages:
debug.info(3,"Converting blockage {}".format(str(blockage)))
blockage_list = self.convert_blockage(blockage)
self.blocked_grids.update(blockage_list)
def retrieve_blockages(self, layer_num):
"""
Recursive find boundaries as blockages to the routing grid.
"""
shapes = self.layout.getAllShapesInStructureList(layer_num)
for boundary in shapes:
ll = vector(boundary[0],boundary[1])
ur = vector(boundary[2],boundary[3])
rect = [ll,ur]
new_pin = pin_layout("blockage{}".format(len(self.blockages)),rect,layer_num)
self.blockages.append(new_pin)
def convert_point_to_units(self, p):
"""
Convert a path set of tracks to center line path.
"""
pt = vector3d(p)
pt = pt.scale(self.track_widths[0],self.track_widths[1],1)
return pt
def convert_wave_to_units(self, wave):
"""
Convert a wave to a set of center points
"""
return [self.convert_point_to_units(i) for i in wave]
def convert_blockage_to_tracks(self, shape):
"""
Convert a rectangular blockage shape into track units.
"""
(ll,ur) = shape
# ll = snap_to_grid(ll)
# ur = snap_to_grid(ur)
# to scale coordinates to tracks
debug.info(3,"Converting [ {0} , {1} ]".format(ll,ur))
old_ll = ll
old_ur = ur
ll=ll.scale(self.track_factor)
ur=ur.scale(self.track_factor)
# We can round since we are using inflated shapes
# and the track points are at the center
ll = ll.round()
ur = ur.round()
# if ll[0]<45 and ll[0]>35 and ll[1]<5 and ll[1]>-5:
# debug.info(0,"Converting [ {0} , {1} ]".format(old_ll,old_ur))
# debug.info(0,"Converted [ {0} , {1} ]".format(ll,ur))
# pin=self.convert_track_to_shape(ll)
# debug.info(0,"Pin {}".format(pin))
return [ll,ur]
def convert_pin_to_tracks(self, pin):
"""
Convert a rectangular pin shape into a list of track locations,layers.
If no on-grid pins are found, it searches for the nearest off-grid pin(s).
If a pin has insufficent overlap, it returns the blockage list to avoid it.
"""
(ll,ur) = pin.rect
debug.info(3,"Converting pin [ {0} , {1} ]".format(ll,ur))
# scale the size bigger to include neaby tracks
ll=ll.scale(self.track_factor).floor()
ur=ur.scale(self.track_factor).ceil()
# width depends on which layer it is
zindex=self.get_zindex(pin.layer_num)
if zindex:
width = self.vert_layer_width
spacing = self.vert_layer_spacing
else:
width = self.horiz_layer_width
spacing = self.horiz_layer_spacing
track_list = []
block_list = []
for x in range(int(ll[0]),int(ur[0])+1):
for y in range(int(ll[1]),int(ur[1])+1):
debug.info(4,"Converting [ {0} , {1} ]".format(x,y))
# however, if there is not enough overlap, then if there is any overlap at all,
# we need to block it to prevent routes coming in on that grid
full_rect = self.convert_track_to_shape(vector3d(x,y,zindex))
overlap_rect=self.compute_overlap(pin.rect,full_rect)
min_overlap = min(overlap_rect)
debug.info(3,"Check overlap: {0} . {1} = {2}".format(pin.rect,full_rect,overlap_rect))
if min_overlap > spacing:
debug.info(3," Overlap: {0} {1} >? {2}".format(overlap_rect,min_overlap,spacing))
track_list.append(vector3d(x,y,zindex))
# otherwise, the pin may not be accessible, so block it
elif min_overlap > 0:
debug.info(3," Insufficient overlap: {0} {1} >? {2}".format(overlap_rect,min_overlap,spacing))
block_list.append(vector3d(x,y,zindex))
else:
debug.info(4," No overlap: {0} {1} max={2}".format(overlap_rect,min_overlap,spacing))
return (tuple(track_list),tuple(block_list))
def compute_overlap(self, r1, r2):
""" Calculate the rectangular overlap of two rectangles. """
(r1_ll,r1_ur) = r1
(r2_ll,r2_ur) = r2
#ov_ur = vector(min(r1_ur.x,r2_ur.x),min(r1_ur.y,r2_ur.y))
#ov_ll = vector(max(r1_ll.x,r2_ll.x),max(r1_ll.y,r2_ll.y))
dy = min(r1_ur.y,r2_ur.y)-max(r1_ll.y,r2_ll.y)
dx = min(r1_ur.x,r2_ur.x)-max(r1_ll.x,r2_ll.x)
if dx>0 and dy>0:
return [dx,dy]
else:
return [0,0]
def convert_track_to_pin(self, track):
"""
Convert a grid point into a rectangle shape that is centered
track in the track and leaves half a DRC space in each direction.
"""
# space depends on which layer it is
if self.get_layer(track[2])==self.horiz_layer_name:
space = 0.5*self.horiz_layer_spacing
else:
space = 0.5*self.vert_layer_spacing
# calculate lower left
x = track.x*self.track_width - 0.5*self.track_width + space
y = track.y*self.track_width - 0.5*self.track_width + space
ll = snap_to_grid(vector(x,y))
# calculate upper right
x = track.x*self.track_width + 0.5*self.track_width - space
y = track.y*self.track_width + 0.5*self.track_width - space
ur = snap_to_grid(vector(x,y))
return [ll,ur]
def convert_track_to_shape(self, track):
"""
Convert a grid point into a rectangle shape that occupies the entire centered
track.
"""
# to scale coordinates to tracks
x = track[0]*self.track_width - 0.5*self.track_width
y = track[1]*self.track_width - 0.5*self.track_width
# offset lowest corner object to to (-track halo,-track halo)
ll = snap_to_grid(vector(x,y))
ur = snap_to_grid(ll + vector(self.track_width,self.track_width))
return [ll,ur]
def analyze_pins(self, pin_name):
"""
Analyze the shapes of a pin and combine them into groups which are connected.
"""
pin_set = self.pins[pin_name]
local_debug=False
# Put each pin in an equivalence class of it's own
equiv_classes = [set([x]) for x in pin_set]
if local_debug:
print("INITIAL\n",equiv_classes)
def compare_classes(class1, class2):
"""
Determine if two classes should be combined and if so return
the combined set. Otherwise, return None.
"""
if local_debug:
print("CLASS1:\n",class1)
print("CLASS2:\n",class2)
# Compare each pin in each class,
# and if any overlap, return the combined the class
for p1 in class1:
for p2 in class2:
if p1.overlaps(p2):
combined_class = class1 | class2
if local_debug:
print("COMBINE:",pformat(combined_class))
return combined_class
if local_debug:
print("NO COMBINE")
return None
def combine_classes(equiv_classes):
""" Recursive function to combine classes. """
if local_debug:
print("\nRECURSE:\n",pformat(equiv_classes))
if len(equiv_classes)==1:
return(equiv_classes)
for class1 in equiv_classes:
for class2 in equiv_classes:
if class1 == class2:
continue
class3 = compare_classes(class1, class2)
if class3:
new_classes = equiv_classes
new_classes.remove(class1)
new_classes.remove(class2)
new_classes.append(class3)
return(combine_classes(new_classes))
else:
return(equiv_classes)
reduced_classes = combine_classes(equiv_classes)
if local_debug:
print("FINAL ",reduced_classes)
self.pin_groups[pin_name]=reduced_classes
def convert_pins(self, pin_name):
"""
Convert the pin groups into pin tracks and blockage tracks
"""
try:
self.pin_components[pin_name]
except:
self.pin_components[pin_name] = []
found_pin = False
for pg in self.pin_groups[pin_name]:
print("PG ",pg)
# Keep the same groups for each pin
pin_set = set()
blockage_set = set()
for pin in pg:
debug.info(2," Converting {0}".format(pin))
(pin_in_tracks,partial_in_tracks)=self.convert_pin_to_tracks(pin)
blockage_in_tracks = self.convert_blockage(pin)
pin_set.update(pin_in_tracks)
pin_set.update(partial_in_tracks)
blockage_set.update(blockage_in_tracks)
debug.info(2," pins {}".format(pin_set))
debug.info(2," blocks {}".format(blockage_set))
# At least one of the groups must have some valid tracks
if (len(pin_set) == 0):
self.write_debug_gds()
debug.error("Unable to find pin on grid.",-1)
# We need to route each of the components, so don't combine the groups
self.pin_components[pin_name].append(pin_set)
# Add all of the blocked grids to the set for the design
self.blocked_grids.update(blockage_set)
# Remove the pins from the blockages since we didn't know
# they were pins when processing blockages
self.blocked_grids.difference_update(pin_set)
def add_source(self, pin_name):
"""
This will mark the grids for all pin components as a source.
Marking as source or target also clears blockage status.
"""
for i in range(self.num_pin_components(pin_name)):
self.add_pin_component_source(pin_name, i)
def add_target(self, pin_name):
"""
This will mark the grids for all pin components as a target.
Marking as source or target also clears blockage status.
"""
for i in range(self.num_pin_components(pin_name)):
self.add_pin_component_target(pin_name, i)
def num_pin_components(self, pin_name):
"""
This returns how many disconnected pin components there are.
"""
return len(self.pin_components[pin_name])
def add_pin_component_source(self, pin_name, index):
"""
This will mark only the pin tracks from the indexed pin component as a source.
It also unsets it as a blockage.
"""
debug.check(index<self.num_pin_components(pin_name),"Pin component index too large.")
pin_in_tracks = self.pin_components[pin_name][index]
debug.info(1,"Set source: " + str(pin_name) + " " + str(pin_in_tracks))
self.rg.add_source(pin_in_tracks)
def add_pin_component_target(self, pin_name, index):
"""
This will mark only the pin tracks from the indexed pin component as a target.
It also unsets it as a blockage.
"""
debug.check(index<self.num_pin_components(pin_name),"Pin component index too large.")
pin_in_tracks = self.pin_components[pin_name][index]
debug.info(1,"Set target: " + str(pin_name) + " " + str(pin_in_tracks))
self.rg.add_target(pin_in_tracks)
def add_supply_rail_target(self, pin_name):
"""
Add the supply rails of given name as a routing target.
"""
for rail in self.supply_rails:
if rail.name != pin_name:
continue
for wave_index in range(len(rail)):
pin_in_tracks = rail[wave_index]
#debug.info(1,"Set target: " + str(pin_name) + " " + str(pin_in_tracks))
self.rg.set_target(pin_in_tracks)
self.rg.set_blocked(pin_in_tracks,False)
def set_supply_rail_blocked(self, value=True):
"""
Add the supply rails of given name as a routing target.
"""
for rail in self.supply_rails:
for wave_index in range(len(rail)):
pin_in_tracks = rail[wave_index]
#debug.info(1,"Set target: " + str(pin_name) + " " + str(pin_in_tracks))
self.rg.set_blocked(pin_in_tracks,value)
def set_component_blockages(self, pin_name, value=True):
"""
Block all of the pin components.
"""
for component in self.pin_components[pin_name]:
self.set_blockages(component, value)
def write_debug_gds(self):
"""
Write out a GDS file with the routing grid and search information annotated on it.
"""
# Only add the debug info to the gds file if we have any debugging on.
# This is because we may reroute a wire with detours and don't want the debug information.
if OPTS.debug_level==0: return
self.add_router_info()
debug.error("Writing debug_route.gds")
self.cell.gds_write("debug_route.gds")
def add_router_info(self):
"""
Write the routing grid and router cost, blockage, pins on
the boundary layer for debugging purposes. This can only be
called once or the labels will overlap.
"""
debug.info(0,"Adding router info")
if OPTS.debug_level>0:
for blockage in self.blockages:
# Display the inflated blockage
(ll,ur) = blockage.inflate()
self.cell.add_rect(layer="text",
offset=ll,
width=ur.x-ll.x,
height=ur.y-ll.y)
if OPTS.debug_level>1:
grid_keys=self.rg.map.keys()
partial_track=vector(0,self.track_width/6.0)
for g in grid_keys:
shape = self.convert_track_to_shape(g)
self.cell.add_rect(layer="text",
offset=shape[0],
width=shape[1].x-shape[0].x,
height=shape[1].y-shape[0].y)
# These are the on grid pins
#rect = self.convert_track_to_pin(g)
#self.cell.add_rect(layer="boundary",
# offset=rect[0],
# width=rect[1].x-rect[0].x,
# height=rect[1].y-rect[0].y)
t=self.rg.map[g].get_type()
# midpoint offset
off=vector((shape[1].x+shape[0].x)/2,
(shape[1].y+shape[0].y)/2)
if g[2]==1:
# Upper layer is upper right label
type_off=off+partial_track
else:
# Lower layer is lower left label
type_off=off-partial_track
if t!=None:
self.cell.add_label(text=str(t),
layer="text",
offset=type_off)
self.cell.add_label(text="{0},{1}".format(g[0],g[1]),
layer="text",
offset=shape[0],
zoom=0.05)
def prepare_path(self,path):
"""
Prepare a path or wave for routing ebedding.
This tracks the path, simplifies the path and marks it as a path for debug output.
"""
debug.info(4,"Set path: " + str(path))
# Keep track of path for future blockages
#path.set_blocked()
# This is marked for debug
path.set_path()
# For debugging... if the path failed to route.
if False or path==None:
self.write_debug_gds()
# First, simplify the path for
#debug.info(1,str(self.path))
contracted_path = self.contract_path(path)
debug.info(3,"Contracted path: " + str(contracted_path))
return contracted_path
def add_route(self,path):
"""
Add the current wire route to the given design instance.
"""
path=self.prepare_path(path)
# convert the path back to absolute units from tracks
# This assumes 1-track wide again
abs_path = [self.convert_point_to_units(x[0]) for x in path]
debug.info(1,str(abs_path))
# If it is only a square, add an enclosure to the track
if len(path)==1:
self.add_enclosure(abs_path[0])
else:
# Otherwise, add the route which includes enclosures
self.cell.add_route(layers=self.layers,
coordinates=abs_path,
layer_widths=self.layer_widths)
def add_enclosure(self, loc):
"""
Add a metal enclosure that is the size of the routing grid minus a spacing on each side.
"""
(ll,ur) = self.convert_track_to_pin(loc)
self.cell.add_rect_center(layer=self.get_layer(loc.z),
offset=vector(loc.x,loc.y),
width=ur.x-ll.x,
height=ur.y-ll.y)
def add_via(self,loc,size=1):
"""
Add a via centered at the current location
"""
loc = self.convert_point_to_units(vector3d(loc[0],loc[1],0))
self.cell.add_via_center(layers=self.layers,
offset=vector(loc.x,loc.y),
size=(size,size))
def add_wavepath(self, name, path):
"""
Add the current wave to the given design instance.
"""
path=self.prepare_path(path)
# convert the path back to absolute units from tracks
abs_path = [self.convert_wave_to_units(i) for i in path]
ur = abs_path[-1][-1]
ll = abs_path[0][0]
pin = self.cell.add_layout_pin(name,
layer=self.get_layer(path[0][0].z),
offset=vector(ll.x,ll.y),
width=ur.x-ll.x,
height=ur.y-ll.y)
return pin
def get_inertia(self,p0,p1):
"""
Sets the direction based on the previous direction we came from.
"""
# direction (index) of movement
if p0.x!=p1.x:
return 0
elif p0.y!=p1.y:
return 1
else:
# z direction
return 2
def contract_path(self,path):
"""
Remove intermediate points in a rectilinear path or a wave.
"""
# Waves are always linear, so just return the first and last.
if self.is_wave(path):
return [path[0],path[-1]]
# Make a list only of points that change inertia of the path
newpath = [path[0]]
for i in range(1,len(path)-1):
prev_inertia=self.get_inertia(path[i-1][0],path[i][0])
next_inertia=self.get_inertia(path[i][0],path[i+1][0])
# if we switch directions, add the point, otherwise don't
if prev_inertia!=next_inertia:
newpath.append(path[i])
# always add the last path unless it was a single point
if len(path)>1:
newpath.append(path[-1])
return newpath
def add_path_blockages(self):
"""
Go through all of the past paths and add them as blockages.
This is so we don't have to write/reload the GDS.
"""
for path in self.paths:
self.rg.block_path(path)
def run_router(self, detour_scale):
"""
This assumes the blockages, source, and target are all set up.
"""
# returns the path in tracks
(path,cost) = self.rg.route(detour_scale)
if path:
debug.info(1,"Found path: cost={0} ".format(cost))
debug.info(2,str(path))
self.paths.append(path)
self.add_route(path)
else:
self.write_debug_gds()
# clean up so we can try a reroute
self.reinit()
return False
return True
# FIXME: This should be replaced with vector.snap_to_grid at some point
def snap_to_grid(offset):
"""
Changes the coodrinate to match the grid settings
"""
grid = tech.drc["grid"]
x = offset[0]
y = offset[1]
# this gets the nearest integer value
xgrid = int(round(round((x / grid), 2), 0))
ygrid = int(round(round((y / grid), 2), 0))
xoff = xgrid * grid
yoff = ygrid * grid
return vector(xoff, yoff)