mirror of https://github.com/VLSIDA/OpenRAM.git
463 lines
14 KiB
Python
463 lines
14 KiB
Python
import debug
|
|
from tech import GDS, drc
|
|
from vector import vector
|
|
from tech import layer
|
|
import math
|
|
|
|
class pin_layout:
|
|
"""
|
|
A class to represent a rectangular design pin. It is limited to a
|
|
single shape.
|
|
"""
|
|
|
|
def __init__(self, name, rect, layer_name_num):
|
|
self.name = name
|
|
# repack the rect as a vector, just in case
|
|
if type(rect[0])==vector:
|
|
self.rect = rect
|
|
else:
|
|
self.rect = [vector(rect[0]),vector(rect[1])]
|
|
# snap the rect to the grid
|
|
self.rect = [x.snap_to_grid() for x in self.rect]
|
|
|
|
debug.check(self.width()>0,"Zero width pin.")
|
|
debug.check(self.height()>0,"Zero height pin.")
|
|
|
|
# if it's a layer number look up the layer name. this assumes a unique layer number.
|
|
if type(layer_name_num)==int:
|
|
self.layer = list(layer.keys())[list(layer.values()).index(layer_name_num)]
|
|
else:
|
|
self.layer=layer_name_num
|
|
self.layer_num = layer[self.layer]
|
|
|
|
def __str__(self):
|
|
""" override print function output """
|
|
return "({} layer={} ll={} ur={})".format(self.name,self.layer,self.rect[0],self.rect[1])
|
|
|
|
def __repr__(self):
|
|
"""
|
|
override repr function output (don't include
|
|
name since pin shapes could have same shape but diff name e.g. blockage vs A)
|
|
"""
|
|
return "(layer={} ll={} ur={})".format(self.layer,self.rect[0],self.rect[1])
|
|
|
|
def __hash__(self):
|
|
""" Implement the hash function for sets etc. """
|
|
return hash(repr(self))
|
|
|
|
def __lt__(self, other):
|
|
""" Provide a function for ordering items by the ll point """
|
|
(ll, ur) = self.rect
|
|
(oll, our) = other.rect
|
|
|
|
if ll.x < oll.x and ll.y < oll.y:
|
|
return True
|
|
|
|
return False
|
|
|
|
def __eq__(self, other):
|
|
""" Check if these are the same pins for duplicate checks """
|
|
if isinstance(other, self.__class__):
|
|
return (self.layer==other.layer and self.rect == other.rect)
|
|
else:
|
|
return False
|
|
|
|
def inflate(self, spacing=None):
|
|
"""
|
|
Inflate the rectangle by the spacing (or other rule)
|
|
and return the new rectangle.
|
|
"""
|
|
if not spacing:
|
|
spacing = 0.5*drc("{0}_to_{0}".format(self.layer))
|
|
|
|
(ll,ur) = self.rect
|
|
spacing = vector(spacing, spacing)
|
|
newll = ll - spacing
|
|
newur = ur + spacing
|
|
|
|
return (newll, newur)
|
|
|
|
def intersection(self, other):
|
|
""" Check if a shape overlaps with a rectangle """
|
|
(ll,ur) = self.rect
|
|
(oll,our) = other.rect
|
|
|
|
min_x = max(ll.x, oll.x)
|
|
max_x = min(ll.x, oll.x)
|
|
min_y = max(ll.y, oll.y)
|
|
max_y = min(ll.y, oll.y)
|
|
|
|
return [vector(min_x,min_y),vector(max_x,max_y)]
|
|
|
|
def xoverlaps(self, other):
|
|
""" Check if shape has x overlap """
|
|
(ll,ur) = self.rect
|
|
(oll,our) = other.rect
|
|
x_overlaps = False
|
|
# check if self is within other x range
|
|
if (ll.x >= oll.x and ll.x <= our.x) or (ur.x >= oll.x and ur.x <= our.x):
|
|
x_overlaps = True
|
|
# check if other is within self x range
|
|
if (oll.x >= ll.x and oll.x <= ur.x) or (our.x >= ll.x and our.x <= ur.x):
|
|
x_overlaps = True
|
|
|
|
return x_overlaps
|
|
|
|
def yoverlaps(self, other):
|
|
""" Check if shape has x overlap """
|
|
(ll,ur) = self.rect
|
|
(oll,our) = other.rect
|
|
y_overlaps = False
|
|
|
|
# check if self is within other y range
|
|
if (ll.y >= oll.y and ll.y <= our.y) or (ur.y >= oll.y and ur.y <= our.y):
|
|
y_overlaps = True
|
|
# check if other is within self y range
|
|
if (oll.y >= ll.y and oll.y <= ur.y) or (our.y >= ll.y and our.y <= ur.y):
|
|
y_overlaps = True
|
|
|
|
return y_overlaps
|
|
|
|
def xcontains(self, other):
|
|
""" Check if shape contains the x overlap """
|
|
(ll,ur) = self.rect
|
|
(oll,our) = other.rect
|
|
|
|
return (oll.x >= ll.x and our.x <= ur.x)
|
|
|
|
def ycontains(self, other):
|
|
""" Check if shape contains the y overlap """
|
|
(ll,ur) = self.rect
|
|
(oll,our) = other.rect
|
|
|
|
return (oll.y >= ll.y and our.y <= ur.y)
|
|
|
|
def contains(self, other):
|
|
""" Check if a shape contains another rectangle """
|
|
# If it is the same shape entirely, it is contained!
|
|
if self == other:
|
|
return True
|
|
|
|
# Can only overlap on the same layer
|
|
if self.layer != other.layer:
|
|
return False
|
|
|
|
if not self.xcontains(other):
|
|
return False
|
|
|
|
if not self.ycontains(other):
|
|
return False
|
|
|
|
return True
|
|
|
|
def contained_by_any(self, shape_list):
|
|
""" Checks if shape is contained by any in the list """
|
|
for shape in shape_list:
|
|
if shape.contains(self):
|
|
return True
|
|
return False
|
|
|
|
|
|
def overlaps(self, other):
|
|
""" Check if a shape overlaps with a rectangle """
|
|
# Can only overlap on the same layer
|
|
if self.layer != other.layer:
|
|
return False
|
|
|
|
x_overlaps = self.xoverlaps(other)
|
|
y_overlaps = self.yoverlaps(other)
|
|
|
|
return x_overlaps and y_overlaps
|
|
|
|
def area(self):
|
|
""" Return the area. """
|
|
return self.height()*self.width()
|
|
|
|
def height(self):
|
|
""" Return height. Abs is for pre-normalized value."""
|
|
return abs(self.rect[1].y-self.rect[0].y)
|
|
|
|
def width(self):
|
|
""" Return width. Abs is for pre-normalized value."""
|
|
return abs(self.rect[1].x-self.rect[0].x)
|
|
|
|
def normalize(self):
|
|
""" Re-find the LL and UR points after a transform """
|
|
(first,second)=self.rect
|
|
ll = vector(min(first[0],second[0]),min(first[1],second[1]))
|
|
ur = vector(max(first[0],second[0]),max(first[1],second[1]))
|
|
self.rect=[ll,ur]
|
|
|
|
def transform(self,offset,mirror,rotate):
|
|
""" Transform with offset, mirror and rotation to get the absolute pin location.
|
|
We must then re-find the ll and ur. The master is the cell instance. """
|
|
(ll,ur) = self.rect
|
|
if mirror=="MX":
|
|
ll=ll.scale(1,-1)
|
|
ur=ur.scale(1,-1)
|
|
elif mirror=="MY":
|
|
ll=ll.scale(-1,1)
|
|
ur=ur.scale(-1,1)
|
|
elif mirror=="XY":
|
|
ll=ll.scale(-1,-1)
|
|
ur=ur.scale(-1,-1)
|
|
|
|
if rotate==90:
|
|
ll=ll.rotate_scale(-1,1)
|
|
ur=ur.rotate_scale(-1,1)
|
|
elif rotate==180:
|
|
ll=ll.scale(-1,-1)
|
|
ur=ur.scale(-1,-1)
|
|
elif rotate==270:
|
|
ll=ll.rotate_scale(1,-1)
|
|
ur=ur.rotate_scale(1,-1)
|
|
|
|
self.rect=[offset+ll,offset+ur]
|
|
self.normalize()
|
|
|
|
def center(self):
|
|
return vector(0.5*(self.rect[0].x+self.rect[1].x),0.5*(self.rect[0].y+self.rect[1].y))
|
|
|
|
def cx(self):
|
|
""" Center x """
|
|
return 0.5*(self.rect[0].x+self.rect[1].x)
|
|
|
|
def cy(self):
|
|
""" Center y """
|
|
return 0.5*(self.rect[0].y+self.rect[1].y)
|
|
|
|
# The four possible corners
|
|
def ll(self):
|
|
""" Lower left point """
|
|
return self.rect[0]
|
|
|
|
def ul(self):
|
|
""" Upper left point """
|
|
return vector(self.rect[0].x,self.rect[1].y)
|
|
|
|
def lr(self):
|
|
""" Lower right point """
|
|
return vector(self.rect[1].x,self.rect[0].y)
|
|
|
|
def ur(self):
|
|
""" Upper right point """
|
|
return self.rect[1]
|
|
|
|
# The possible y edge values
|
|
def uy(self):
|
|
""" Upper y value """
|
|
return self.rect[1].y
|
|
|
|
def by(self):
|
|
""" Bottom y value """
|
|
return self.rect[0].y
|
|
|
|
# The possible x edge values
|
|
|
|
def lx(self):
|
|
""" Left x value """
|
|
return self.rect[0].x
|
|
|
|
def rx(self):
|
|
""" Right x value """
|
|
return self.rect[1].x
|
|
|
|
|
|
# The edge centers
|
|
def rc(self):
|
|
""" Right center point """
|
|
return vector(self.rect[1].x,0.5*(self.rect[0].y+self.rect[1].y))
|
|
|
|
def lc(self):
|
|
""" Left center point """
|
|
return vector(self.rect[0].x,0.5*(self.rect[0].y+self.rect[1].y))
|
|
|
|
def uc(self):
|
|
""" Upper center point """
|
|
return vector(0.5*(self.rect[0].x+self.rect[1].x),self.rect[1].y)
|
|
|
|
def bc(self):
|
|
""" Bottom center point """
|
|
return vector(0.5*(self.rect[0].x+self.rect[1].x),self.rect[0].y)
|
|
|
|
|
|
def gds_write_file(self, newLayout):
|
|
"""Writes the pin shape and label to GDS"""
|
|
debug.info(4, "writing pin (" + str(self.layer) + "):"
|
|
+ str(self.width()) + "x" + str(self.height()) + " @ " + str(self.ll()))
|
|
newLayout.addBox(layerNumber=layer[self.layer],
|
|
purposeNumber=0,
|
|
offsetInMicrons=self.ll(),
|
|
width=self.width(),
|
|
height=self.height(),
|
|
center=False)
|
|
# Add the tet in the middle of the pin.
|
|
# This fixes some pin label offsetting when GDS gets imported into Magic.
|
|
newLayout.addText(text=self.name,
|
|
layerNumber=layer[self.layer],
|
|
purposeNumber=0,
|
|
offsetInMicrons=self.center(),
|
|
magnification=GDS["zoom"],
|
|
rotate=None)
|
|
|
|
|
|
def compute_overlap(self, other):
|
|
""" Calculate the rectangular overlap of two rectangles. """
|
|
(r1_ll,r1_ur) = self.rect
|
|
(r2_ll,r2_ur) = other.rect
|
|
|
|
#ov_ur = vector(min(r1_ur.x,r2_ur.x),min(r1_ur.y,r2_ur.y))
|
|
#ov_ll = vector(max(r1_ll.x,r2_ll.x),max(r1_ll.y,r2_ll.y))
|
|
|
|
dy = min(r1_ur.y,r2_ur.y)-max(r1_ll.y,r2_ll.y)
|
|
dx = min(r1_ur.x,r2_ur.x)-max(r1_ll.x,r2_ll.x)
|
|
|
|
if dx>=0 and dy>=0:
|
|
return [dx,dy]
|
|
else:
|
|
return [0,0]
|
|
|
|
def distance(self, other):
|
|
"""
|
|
Calculate the distance to another pin layout.
|
|
"""
|
|
(r1_ll,r1_ur) = self.rect
|
|
(r2_ll,r2_ur) = other.rect
|
|
|
|
def dist(x1, y1, x2, y2):
|
|
return sqrt((x2-x1)**2 + (y2-y1)**2)
|
|
|
|
left = r2_ur.x < r1_ll.x
|
|
right = r1_ur.x < r2_ll.x
|
|
bottom = r2_ur.y < r1_ll.y
|
|
top = r1_ur.y < r2_ll.y
|
|
|
|
if top and left:
|
|
return dist(r1_ll.x, r1_ur.y, r2_ur.x, r2_ll.y)
|
|
elif left and bottom:
|
|
return dist(r1_ll.x, r1_ll.y, r2_ur.x, r2_ur.y)
|
|
elif bottom and right:
|
|
return dist(r1_ur.x, r1_ll.y, r2_ll.x, r2_ur.y)
|
|
elif right and top:
|
|
return dist(r1_ur.x, r1_ur.y, r2_ll.x, r2_ll.y)
|
|
elif left:
|
|
return r1_ll.x - r2_ur.x
|
|
elif right:
|
|
return r2_ll.x - r1.ur.x
|
|
elif bottom:
|
|
return r1_ll.y - r2_ur.y
|
|
elif top:
|
|
return r2_ll.y - r1_ur.y
|
|
else:
|
|
# rectangles intersect
|
|
return 0
|
|
|
|
|
|
def overlap_length(self, other):
|
|
"""
|
|
Calculate the intersection segment and determine its length
|
|
"""
|
|
|
|
if self.contains(other):
|
|
return math.inf
|
|
elif other.contains(self):
|
|
return math.inf
|
|
else:
|
|
intersections = self.compute_overlap_segment(other)
|
|
# This is the common case where two pairs of edges overlap
|
|
# at two points, so just find the distance between those two points
|
|
if len(intersections)==2:
|
|
(p1,p2) = intersections
|
|
return math.sqrt(pow(p1[0]-p2[0],2) + pow(p1[1]-p2[1],2))
|
|
else:
|
|
# This is where we had a corner intersection or none
|
|
return 0
|
|
|
|
|
|
def compute_overlap_segment(self, other):
|
|
"""
|
|
Calculate the intersection segment of two rectangles
|
|
(if any)
|
|
"""
|
|
(r1_ll,r1_ur) = self.rect
|
|
(r2_ll,r2_ur) = other.rect
|
|
|
|
# The other corners besides ll and ur
|
|
r1_ul = vector(r1_ll.x, r1_ur.y)
|
|
r1_lr = vector(r1_ur.x, r1_ll.y)
|
|
r2_ul = vector(r2_ll.x, r2_ur.y)
|
|
r2_lr = vector(r2_ur.x, r2_ll.y)
|
|
|
|
from itertools import tee
|
|
def pairwise(iterable):
|
|
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
|
|
a, b = tee(iterable)
|
|
next(b, None)
|
|
return zip(a, b)
|
|
|
|
# R1 edges CW
|
|
r1_cw_points = [r1_ll, r1_ul, r1_ur, r1_lr, r1_ll]
|
|
r1_edges = []
|
|
for (p,q) in pairwise(r1_cw_points):
|
|
r1_edges.append([p,q])
|
|
|
|
# R2 edges CW
|
|
r2_cw_points = [r2_ll, r2_ul, r2_ur, r2_lr, r2_ll]
|
|
r2_edges = []
|
|
for (p,q) in pairwise(r2_cw_points):
|
|
r2_edges.append([p,q])
|
|
|
|
# There are 4 edges on each rectangle
|
|
# so just brute force check intersection of each
|
|
# Two pairs of them should intersect
|
|
intersections = []
|
|
for r1e in r1_edges:
|
|
for r2e in r2_edges:
|
|
i = self.segment_intersection(r1e, r2e)
|
|
if i:
|
|
intersections.append(i)
|
|
|
|
return intersections
|
|
|
|
def on_segment(self, p, q, r):
|
|
"""
|
|
Given three co-linear points, determine if q lies on segment pr
|
|
"""
|
|
if q[0] <= max(p[0], r[0]) and \
|
|
q[0] >= min(p[0], r[0]) and \
|
|
q[1] <= max(p[1], r[1]) and \
|
|
q[1] >= min(p[1], r[1]):
|
|
return True
|
|
|
|
return False
|
|
|
|
def segment_intersection(self, s1, s2):
|
|
"""
|
|
Determine the intersection point of two segments
|
|
Return the a segment if they overlap.
|
|
Return None if they don't.
|
|
"""
|
|
(a,b) = s1
|
|
(c,d) = s2
|
|
# Line AB represented as a1x + b1y = c1
|
|
a1 = b.y - a.y
|
|
b1 = a.x - b.x
|
|
c1 = a1*a.x + b1*a.y
|
|
|
|
# Line CD represented as a2x + b2y = c2
|
|
a2 = d.y - c.y
|
|
b2 = c.x - d.x
|
|
c2 = a2*c.x + b2*c.y
|
|
|
|
determinant = a1*b2 - a2*b1
|
|
|
|
if determinant!=0:
|
|
x = (b2*c1 - b1*c2)/determinant
|
|
y = (a1*c2 - a2*c1)/determinant
|
|
|
|
r = [x,y]
|
|
if self.on_segment(a, r, b) and self.on_segment(c, r, d):
|
|
return [x, y]
|
|
|
|
return None
|