mirror of https://github.com/VLSIDA/OpenRAM.git
437 lines
19 KiB
Python
437 lines
19 KiB
Python
import os,sys,re
|
|
import debug
|
|
import math
|
|
import setup_hold
|
|
import delay
|
|
import charutils as ch
|
|
import tech
|
|
import numpy as np
|
|
from globals import OPTS
|
|
|
|
class lib:
|
|
""" lib file generation."""
|
|
|
|
def __init__(self, out_dir, sram, sp_file, use_model=OPTS.analytical_delay):
|
|
self.out_dir = out_dir
|
|
self.sram = sram
|
|
self.sp_file = sp_file
|
|
self.use_model = use_model
|
|
|
|
self.prepare_tables()
|
|
|
|
self.create_corners()
|
|
|
|
self.characterize_corners()
|
|
|
|
|
|
def prepare_tables(self):
|
|
""" Determine the load/slews if they aren't specified in the config file. """
|
|
# These are the parameters to determine the table sizes
|
|
#self.load_scales = np.array([0.1, 0.25, 0.5, 1, 2, 4, 8])
|
|
self.load_scales = np.array([0.25, 1, 8])
|
|
#self.load_scales = np.array([0.25, 1])
|
|
self.load = tech.spice["msflop_in_cap"]
|
|
self.loads = self.load_scales*self.load
|
|
debug.info(1,"Loads: {0}".format(self.loads))
|
|
|
|
#self.slew_scales = np.array([0.1, 0.25, 0.5, 1, 2, 4, 8])
|
|
self.slew_scales = np.array([0.25, 1, 8])
|
|
#self.slew_scales = np.array([0.25, 1])
|
|
self.slew = tech.spice["rise_time"]
|
|
self.slews = self.slew_scales*self.slew
|
|
debug.info(1,"Slews: {0}".format(self.slews))
|
|
|
|
|
|
def create_corners(self):
|
|
""" Create corners for characterization. """
|
|
# Get the corners from the options file
|
|
self.temperatures = OPTS.temperatures
|
|
self.supply_voltages = OPTS.supply_voltages
|
|
self.process_corners = OPTS.process_corners
|
|
|
|
# Enumerate all possible corners
|
|
self.corners = []
|
|
self.lib_files = []
|
|
for proc in self.process_corners:
|
|
for temp in self.temperatures:
|
|
for volt in self.supply_voltages:
|
|
self.corner_name = "{0}_{1}_{2}V_{3}C".format(self.sram.name,
|
|
proc,
|
|
volt,
|
|
temp)
|
|
self.corner_name = self.corner_name.replace(".","") # Remove decimals
|
|
lib_name = self.out_dir+"{}.lib".format(self.corner_name)
|
|
|
|
# A corner is a tuple of PVT
|
|
self.corners.append((proc, volt, temp))
|
|
self.lib_files.append(lib_name)
|
|
|
|
def characterize_corners(self):
|
|
""" Characterize the list of corners. """
|
|
for (self.corner,lib_name) in zip(self.corners,self.lib_files):
|
|
debug.info(1,"Corner: " + str(self.corner))
|
|
(self.process, self.voltage, self.temperature) = self.corner
|
|
self.lib = open(lib_name, "w")
|
|
debug.info(1,"Writing to {0}".format(lib_name))
|
|
self.characterize()
|
|
|
|
def characterize(self):
|
|
""" Characterize the current corner. """
|
|
|
|
self.write_header()
|
|
|
|
self.write_data_bus()
|
|
|
|
self.write_addr_bus()
|
|
|
|
self.write_control_pins()
|
|
|
|
self.write_clk()
|
|
|
|
self.lib.close()
|
|
|
|
def write_header(self):
|
|
""" Write the header information """
|
|
self.lib.write("library ({0}_lib)".format(self.corner_name))
|
|
self.lib.write("{\n")
|
|
self.lib.write(" delay_model : \"table_lookup\";\n")
|
|
|
|
self.write_units()
|
|
self.write_defaults()
|
|
self.write_LUT_templates()
|
|
|
|
self.lib.write(" default_operating_conditions : TT; \n")
|
|
|
|
self.write_bus()
|
|
|
|
self.lib.write("cell ({0})".format(self.sram.name))
|
|
self.lib.write("{\n")
|
|
self.lib.write(" memory(){ \n")
|
|
self.lib.write(" type : ram;\n")
|
|
self.lib.write(" address_width : {0};\n".format(self.sram.addr_size))
|
|
self.lib.write(" word_width : {0};\n".format(self.sram.word_size))
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" interface_timing : true;\n")
|
|
self.lib.write(" dont_use : true;\n")
|
|
self.lib.write(" map_only : true;\n")
|
|
self.lib.write(" dont_touch : true;\n")
|
|
self.lib.write(" area : {0};\n\n".format(self.sram.width * self.sram.height))
|
|
|
|
|
|
def write_units(self):
|
|
""" Adds default units for time, voltage, current,..."""
|
|
|
|
self.lib.write(" time_unit : \"1ns\" ;\n")
|
|
self.lib.write(" voltage_unit : \"1v\" ;\n")
|
|
self.lib.write(" current_unit : \"1mA\" ;\n")
|
|
self.lib.write(" resistance_unit : \"1kohm\" ;\n")
|
|
self.lib.write(" capacitive_load_unit(1 ,fF) ;\n")
|
|
self.lib.write(" leakage_power_unit : \"1mW\" ;\n")
|
|
self.lib.write(" pulling_resistance_unit :\"1kohm\" ;\n")
|
|
self.lib.write(" operating_conditions({}){{\n".format(self.process))
|
|
self.lib.write(" voltage : {} ;\n".format(self.voltage))
|
|
self.lib.write(" temperature : {};\n".format(self.temperature))
|
|
self.lib.write(" }\n\n")
|
|
|
|
def write_defaults(self):
|
|
""" Adds default values for slew and capacitance."""
|
|
|
|
self.lib.write(" input_threshold_pct_fall : 50.0 ;\n")
|
|
self.lib.write(" output_threshold_pct_fall : 50.0 ;\n")
|
|
self.lib.write(" input_threshold_pct_rise : 50.0 ;\n")
|
|
self.lib.write(" output_threshold_pct_rise : 50.0 ;\n")
|
|
self.lib.write(" slew_lower_threshold_pct_fall : 10.0 ;\n")
|
|
self.lib.write(" slew_upper_threshold_pct_fall : 90.0 ;\n")
|
|
self.lib.write(" slew_lower_threshold_pct_rise : 10.0 ;\n")
|
|
self.lib.write(" slew_upper_threshold_pct_rise : 90.0 ;\n\n")
|
|
|
|
self.lib.write(" default_cell_leakage_power : 0.0 ;\n")
|
|
self.lib.write(" default_leakage_power_density : 0.0 ;\n")
|
|
self.lib.write(" default_input_pin_cap : 1.0 ;\n")
|
|
self.lib.write(" default_inout_pin_cap : 1.0 ;\n")
|
|
self.lib.write(" default_output_pin_cap : 0.0 ;\n")
|
|
self.lib.write(" default_max_transition : 0.5 ;\n")
|
|
self.lib.write(" default_fanout_load : 1.0 ;\n")
|
|
self.lib.write(" default_max_fanout : 4.0 ;\n")
|
|
self.lib.write(" default_connection_class : universal ;\n\n")
|
|
|
|
def create_list(self,values):
|
|
""" Helper function to create quoted, line wrapped list """
|
|
list_values = ", ".join(str(v) for v in values)
|
|
return "\"{0}\"".format(list_values)
|
|
|
|
def create_array(self,values, length):
|
|
""" Helper function to create quoted, line wrapped array with each row of given length """
|
|
# check that the length is a multiple or give an error!
|
|
debug.check(len(values)%length == 0,"Values are not a multiple of the length. Cannot make a full array.")
|
|
rounded_values = map(ch.round_time,values)
|
|
split_values = [rounded_values[i:i+length] for i in range(0, len(rounded_values), length)]
|
|
formatted_rows = map(self.create_list,split_values)
|
|
formatted_array = ",\\\n".join(formatted_rows)
|
|
return formatted_array
|
|
|
|
def write_index(self, number, values):
|
|
""" Write the index """
|
|
quoted_string = self.create_list(values)
|
|
self.lib.write(" index_{0}({1});\n".format(number,quoted_string))
|
|
|
|
def write_values(self, values, row_length, indent):
|
|
""" Write the index """
|
|
quoted_string = self.create_array(values, row_length)
|
|
# indent each newline plus extra spaces for word values
|
|
indented_string = quoted_string.replace('\n', '\n' + indent +" ")
|
|
self.lib.write("{0}values({1});\n".format(indent,indented_string))
|
|
|
|
def write_LUT_templates(self):
|
|
""" Adds lookup_table format (A 1x1 lookup_table)."""
|
|
|
|
Tran = ["CELL_TABLE"]
|
|
for i in Tran:
|
|
self.lib.write(" lu_table_template({0})".format(i))
|
|
self.lib.write("{\n")
|
|
self.lib.write(" variable_1 : input_net_transition;\n")
|
|
self.lib.write(" variable_2 : total_output_net_capacitance;\n")
|
|
self.write_index(1,self.slews)
|
|
self.write_index(2,self.loads)
|
|
self.lib.write(" }\n\n")
|
|
|
|
CONS = ["CONSTRAINT_TABLE"]
|
|
for i in CONS:
|
|
self.lib.write(" lu_table_template({0})".format(i))
|
|
self.lib.write("{\n")
|
|
self.lib.write(" variable_1 : related_pin_transition;\n")
|
|
self.lib.write(" variable_2 : constrained_pin_transition;\n")
|
|
self.write_index(1,self.slews)
|
|
self.write_index(2,self.slews)
|
|
self.lib.write(" }\n\n")
|
|
|
|
# self.lib.write(" lu_table_template(CLK_TRAN) {\n")
|
|
# self.lib.write(" variable_1 : constrained_pin_transition;\n")
|
|
# self.write_index(1,self.slews)
|
|
# self.lib.write(" }\n\n")
|
|
|
|
# self.lib.write(" lu_table_template(TRAN) {\n")
|
|
# self.lib.write(" variable_1 : total_output_net_capacitance;\n")
|
|
# self.write_index(1,self.slews)
|
|
# self.lib.write(" }\n\n")
|
|
|
|
# CONS2 = ["INPUT_BY_TRANS_FOR_CLOCK" , "INPUT_BY_TRANS_FOR_SIGNAL"]
|
|
# for i in CONS2:
|
|
# self.lib.write(" power_lut_template({0})".format(i))
|
|
# self.lib.write("{\n")
|
|
# self.lib.write(" variable_1 : input_transition_time;\n")
|
|
# #self.write_index(1,self.slews)
|
|
# self.write_index(1,[self.slews[0]])
|
|
# self.lib.write(" }\n\n")
|
|
|
|
def write_bus(self):
|
|
""" Adds format of DATA and ADDR bus."""
|
|
|
|
self.lib.write("\n\n")
|
|
self.lib.write(" type (DATA){\n")
|
|
self.lib.write(" base_type : array;\n")
|
|
self.lib.write(" data_type : bit;\n")
|
|
self.lib.write(" bit_width : {0};\n".format(self.sram.word_size))
|
|
self.lib.write(" bit_from : 0;\n")
|
|
self.lib.write(" bit_to : {0};\n".format(self.sram.word_size - 1))
|
|
self.lib.write(" }\n\n")
|
|
|
|
self.lib.write(" type (ADDR){\n")
|
|
self.lib.write(" base_type : array;\n")
|
|
self.lib.write(" data_type : bit;\n")
|
|
self.lib.write(" bit_width : {0};\n".format(self.sram.addr_size))
|
|
self.lib.write(" bit_from : 0;\n")
|
|
self.lib.write(" bit_to : {0};\n".format(self.sram.addr_size - 1))
|
|
self.lib.write(" }\n\n")
|
|
|
|
|
|
def write_FF_setuphold(self):
|
|
""" Adds Setup and Hold timing results"""
|
|
|
|
self.compute_setup_hold()
|
|
|
|
self.lib.write(" timing(){ \n")
|
|
self.lib.write(" timing_type : setup_rising; \n")
|
|
self.lib.write(" related_pin : \"clk\"; \n")
|
|
self.lib.write(" rise_constraint(CONSTRAINT_TABLE) {\n")
|
|
rounded_values = map(ch.round_time,self.times["setup_times_LH"])
|
|
self.write_values(rounded_values,len(self.slews)," ")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" fall_constraint(CONSTRAINT_TABLE) {\n")
|
|
rounded_values = map(ch.round_time,self.times["setup_times_HL"])
|
|
self.write_values(rounded_values,len(self.slews)," ")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" timing(){ \n")
|
|
self.lib.write(" timing_type : hold_rising; \n")
|
|
self.lib.write(" related_pin : \"clk\"; \n")
|
|
self.lib.write(" rise_constraint(CONSTRAINT_TABLE) {\n")
|
|
rounded_values = map(ch.round_time,self.times["hold_times_LH"])
|
|
self.write_values(rounded_values,len(self.slews)," ")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" fall_constraint(CONSTRAINT_TABLE) {\n")
|
|
rounded_values = map(ch.round_time,self.times["hold_times_HL"])
|
|
self.write_values(rounded_values,len(self.slews)," ")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" }\n")
|
|
|
|
|
|
|
|
def write_data_bus(self):
|
|
""" Adds data bus timing results."""
|
|
|
|
self.compute_delay()
|
|
|
|
self.lib.write(" bus(DATA){\n")
|
|
self.lib.write(" bus_type : DATA; \n")
|
|
self.lib.write(" direction : inout; \n")
|
|
self.lib.write(" max_capacitance : {0}; \n".format(8*tech.spice["msflop_in_cap"]))
|
|
self.lib.write(" three_state : \"!OEb & !clk\"; \n")
|
|
self.lib.write(" memory_write(){ \n")
|
|
self.lib.write(" address : ADDR; \n")
|
|
self.lib.write(" clocked_on : clk; \n")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" memory_read(){ \n")
|
|
self.lib.write(" address : ADDR; \n")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" pin(DATA[{0}:0])".format(self.sram.word_size - 1))
|
|
self.lib.write("{\n")
|
|
|
|
self.lib.write(" internal_power(){\n")
|
|
self.lib.write(" when : \"OEb & !clk\"; \n")
|
|
self.lib.write(" rise_power(scalar){\n")
|
|
self.lib.write(" values(\"{0}\");\n".format(np.mean(self.char_results["write1_power"])))
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" fall_power(scalar){\n")
|
|
self.lib.write(" values(\"{0}\");\n".format(np.mean(self.char_results["write0_power"])))
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" }\n")
|
|
|
|
self.write_FF_setuphold()
|
|
|
|
self.lib.write(" internal_power(){\n")
|
|
self.lib.write(" when : \"!OEb & !clk\"; \n")
|
|
self.lib.write(" rise_power(scalar){\n")
|
|
self.lib.write(" values(\"{0}\");\n".format(np.mean(self.char_results["read1_power"])))
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" fall_power(scalar){\n")
|
|
self.lib.write(" values(\"{0}\");\n".format(np.mean(self.char_results["read0_power"])))
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" timing(){ \n")
|
|
self.lib.write(" timing_sense : non_unate; \n")
|
|
self.lib.write(" related_pin : \"clk\"; \n")
|
|
self.lib.write(" timing_type : falling_edge; \n")
|
|
self.lib.write(" cell_rise(CELL_TABLE) {\n")
|
|
rounded_values = map(ch.round_time,self.char_results["delayLH"])
|
|
self.write_values(rounded_values,len(self.loads)," ")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" cell_fall(CELL_TABLE) {\n")
|
|
rounded_values = map(ch.round_time,self.char_results["delayHL"])
|
|
self.write_values(rounded_values,len(self.loads)," ")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" rise_transition(CELL_TABLE) {\n")
|
|
rounded_values = map(ch.round_time,self.char_results["slewLH"])
|
|
self.write_values(rounded_values,len(self.loads)," ")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" fall_transition(CELL_TABLE) {\n")
|
|
rounded_values = map(ch.round_time,self.char_results["slewHL"])
|
|
self.write_values(rounded_values,len(self.loads)," ")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" }\n\n")
|
|
|
|
|
|
def write_addr_bus(self):
|
|
""" Adds addr bus timing results."""
|
|
|
|
self.lib.write(" bus(ADDR){\n")
|
|
self.lib.write(" bus_type : ADDR; \n")
|
|
self.lib.write(" direction : input; \n")
|
|
self.lib.write(" capacitance : {0}; \n".format(tech.spice["msflop_in_cap"]))
|
|
self.lib.write(" max_transition : {0};\n".format(self.slews[-1]))
|
|
self.lib.write(" fanout_load : 1.000000;\n")
|
|
self.lib.write(" pin(ADDR[{0}:0])".format(self.sram.addr_size - 1))
|
|
self.lib.write("{\n")
|
|
|
|
self.write_FF_setuphold()
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" }\n\n")
|
|
|
|
|
|
def write_control_pins(self):
|
|
""" Adds control pins timing results."""
|
|
|
|
ctrl_pin_names = ["CSb", "OEb", "WEb"]
|
|
for i in ctrl_pin_names:
|
|
self.lib.write(" pin({0})".format(i))
|
|
self.lib.write("{\n")
|
|
self.lib.write(" direction : input; \n")
|
|
self.lib.write(" capacitance : {0}; \n".format(tech.spice["msflop_in_cap"]))
|
|
self.write_FF_setuphold()
|
|
self.lib.write(" }\n\n")
|
|
|
|
|
|
def write_clk(self):
|
|
""" Adds clk pin timing results."""
|
|
|
|
self.compute_delay()
|
|
|
|
self.lib.write(" pin(clk){\n")
|
|
self.lib.write(" clock : true;\n")
|
|
self.lib.write(" direction : input; \n")
|
|
self.lib.write(" capacitance : {0}; \n".format(tech.spice["msflop_in_cap"]))
|
|
min_pulse_width = ch.round_time(self.char_results["min_period"])/2.0
|
|
min_period = ch.round_time(self.char_results["min_period"])
|
|
self.lib.write(" timing(){ \n")
|
|
self.lib.write(" timing_type :\"min_pulse_width\"; \n")
|
|
self.lib.write(" related_pin : clk; \n")
|
|
self.lib.write(" rise_constraint(scalar) {\n")
|
|
self.lib.write(" values(\"{0}\"); \n".format(min_pulse_width))
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" fall_constraint(scalar) {\n")
|
|
self.lib.write(" values(\"{0}\"); \n".format(min_pulse_width))
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" timing(){ \n")
|
|
self.lib.write(" timing_type :\"minimum_period\"; \n")
|
|
self.lib.write(" related_pin : clk; \n")
|
|
self.lib.write(" rise_constraint(scalar) {\n")
|
|
self.lib.write(" values(\"{0}\"); \n".format(min_period))
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" fall_constraint(scalar) {\n")
|
|
self.lib.write(" values(\"{0}\"); \n".format(min_period))
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" }\n")
|
|
self.lib.write(" }\n")
|
|
self.lib.write("}\n")
|
|
|
|
def compute_delay(self):
|
|
""" Do the analysis if we haven't characterized the SRAM yet """
|
|
try:
|
|
self.d
|
|
except AttributeError:
|
|
self.d = delay.delay(self.sram, self.sp_file, self.corner)
|
|
if self.use_model:
|
|
self.char_results = self.d.analytical_delay(self.sram,self.slews,self.loads)
|
|
else:
|
|
probe_address = "1" * self.sram.addr_size
|
|
probe_data = self.sram.word_size - 1
|
|
self.char_results = self.d.analyze(probe_address, probe_data, self.slews, self.loads)
|
|
|
|
|
|
def compute_setup_hold(self):
|
|
""" Do the analysis if we haven't characterized a FF yet """
|
|
# Do the analysis if we haven't characterized a FF yet
|
|
try:
|
|
self.sh
|
|
except AttributeError:
|
|
self.sh = setup_hold.setup_hold(self.corner)
|
|
if self.use_model:
|
|
self.times = self.sh.analytical_setuphold(self.slews,self.loads)
|
|
else:
|
|
self.times = self.sh.analyze(self.slews,self.slews)
|
|
|