OpenRAM/compiler/bitcell_array.py

199 lines
7.9 KiB
Python

import debug
import design
from tech import drc, spice
from vector import vector
from globals import OPTS
class bitcell_array(design.design):
"""
Creates a rows x cols array of memory cells. Assumes bit-lines
and word line is connected by abutment.
Connects the word lines and bit lines.
"""
def __init__(self, cols, rows, name="bitcell_array"):
design.design.__init__(self, name)
debug.info(1, "Creating {0} {1} x {2}".format(self.name, rows, cols))
self.column_size = cols
self.row_size = rows
c = reload(__import__(OPTS.config.bitcell))
self.mod_bitcell = getattr(c, OPTS.config.bitcell)
self.cell = self.mod_bitcell()
self.add_mod(self.cell)
self.height = self.row_size*self.cell.height
self.width = self.column_size*self.cell.width
self.add_pins()
self.create_layout()
self.add_layout_pins()
self.DRC_LVS()
def add_pins(self):
for col in range(self.column_size):
self.add_pin("bl[{0}]".format(col))
self.add_pin("br[{0}]".format(col))
for row in range(self.row_size):
self.add_pin("wl[{0}]".format(row))
self.add_pin("vdd")
self.add_pin("gnd")
def create_layout(self):
xoffset = 0.0
self.cell_inst = {}
for col in range(self.column_size):
yoffset = 0.0
for row in range(self.row_size):
name = "bit_r{0}_c{1}".format(row, col)
if row % 2:
tempy = yoffset + self.cell.height
dir_key = "MX"
else:
tempy = yoffset
dir_key = ""
self.cell_inst[row,col]=self.add_inst(name=name,
mod=self.cell,
offset=[xoffset, tempy],
mirror=dir_key)
self.connect_inst(["bl[{0}]".format(col),
"br[{0}]".format(col),
"wl[{0}]".format(row),
"vdd",
"gnd"])
yoffset += self.cell.height
xoffset += self.cell.width
def add_layout_pins(self):
# Our cells have multiple gnd pins for now.
# FIXME: fix for multiple vdd too
vdd_pin = self.cell.get_pin("vdd")
# shift it up by the overlap amount (gnd_pin) too
# must find the lower gnd pin to determine this overlap
lower_y = self.cell.height
gnd_pins = self.cell.get_pins("gnd")
for gnd_pin in gnd_pins:
if gnd_pin.layer=="metal2" and gnd_pin.by()<lower_y:
lower_y=gnd_pin.by()
# lower_y is negative, so subtract off double this amount for each pair of
# overlapping cells
full_height = self.height - 2*lower_y
vdd_pin = self.cell.get_pin("vdd")
lower_x = vdd_pin.lx()
# lower_x is negative, so subtract off double this amount for each pair of
# overlapping cells
full_width = self.width - 2*lower_x
offset = vector(0.0, 0.0)
for col in range(self.column_size):
# get the pin of the lower row cell and make it the full width
bl_pin = self.cell_inst[0,col].get_pin("BL")
br_pin = self.cell_inst[0,col].get_pin("BR")
self.add_layout_pin(text="bl[{0}]".format(col),
layer="metal2",
offset=bl_pin.ll(),
width=bl_pin.width(),
height=full_height)
self.add_layout_pin(text="br[{0}]".format(col),
layer="metal2",
offset=br_pin.ll(),
width=br_pin.width(),
height=full_height)
# gnd offset is 0 in our cell, but it be non-zero
gnd_pins = self.cell_inst[0,col].get_pins("gnd")
for gnd_pin in gnd_pins:
# avoid duplicates by only doing even rows
# also skip if it is not the full height (a through rail)
if gnd_pin.layer=="metal2" and col%2 == 0 and gnd_pin.height()>=self.cell.height:
self.add_layout_pin(text="gnd",
layer="metal2",
offset=gnd_pin.ll(),
width=gnd_pin.width(),
height=full_height)
# increments to the next column width
offset.x += self.cell.width
offset.x = 0.0
for row in range(self.row_size):
wl_pin = self.cell_inst[row,0].get_pin("WL")
vdd_pins = self.cell_inst[row,0].get_pins("vdd")
gnd_pins = self.cell_inst[row,0].get_pins("gnd")
for gnd_pin in gnd_pins:
if gnd_pin.layer=="metal1":
self.add_layout_pin(text="gnd",
layer="metal1",
offset=gnd_pin.ll(),
width=full_width,
height=drc["minwidth_metal1"])
# add vdd label and offset
# only add to even rows to avoid duplicates
for vdd_pin in vdd_pins:
if row % 2 == 0 and vdd_pin.layer=="metal1":
self.add_layout_pin(text="vdd",
layer="metal1",
offset=vdd_pin.ll(),
width=full_width,
height=drc["minwidth_metal1"])
# add wl label and offset
self.add_layout_pin(text="wl[{0}]".format(row),
layer="metal1",
offset=wl_pin.ll(),
width=full_width,
height=wl_pin.height())
# increments to the next row height
offset.y += self.cell.height
def analytical_delay(self, slew, load=0):
from tech import drc
wl_wire = self.gen_wl_wire()
wl_wire.return_delay_over_wire(slew)
wl_to_cell_delay = wl_wire.return_delay_over_wire(slew)
# hypothetical delay from cell to bl end without sense amp
bl_wire = self.gen_bl_wire()
cell_load = 2 * bl_wire.return_input_cap() # we ingore the wire r
# hence just use the whole c
bl_swing = 0.1
cell_delay = self.cell.analytical_delay(wl_to_cell_delay.slew, cell_load, swing = bl_swing)
#we do not consider the delay over the wire for now
return self.return_delay(cell_delay.delay+wl_to_cell_delay.delay,
wl_to_cell_delay.slew)
def gen_wl_wire(self):
wl_wire = self.generate_rc_net(int(self.column_size), self.width, drc["minwidth_metal1"])
wl_wire.wire_c = 2*spice["min_tx_gate_c"] + wl_wire.wire_c # 2 access tx gate per cell
return wl_wire
def gen_bl_wire(self):
bl_pos = 0
bl_wire = self.generate_rc_net(int(self.row_size-bl_pos), self.height, drc["minwidth_metal1"])
bl_wire.wire_c =spice["min_tx_drain_c"] + bl_wire.wire_c # 1 access tx d/s per cell
return bl_wire
def output_load(self, bl_pos=0):
bl_wire = self.gen_bl_wire()
return bl_wire.wire_c # sense amp only need to charge small portion of the bl
# set as one segment for now
def input_load(self):
wl_wire = self.gen_wl_wire()
return wl_wire.return_input_cap()