OpenRAM/compiler/characterizer/lib.py

892 lines
41 KiB
Python

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2021 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import os,sys,re
import time
import debug
import datetime
from .setup_hold import *
from .delay import *
from .charutils import *
import tech
import numpy as np
from globals import OPTS
from tech import spice
class lib:
""" lib file generation."""
def __init__(self, out_dir, sram, sp_file, use_model=OPTS.analytical_delay):
try:
self.vdd_name = spice["power"]
except KeyError:
self.vdd_name = "vdd"
try:
self.gnd_name = spice["ground"]
except KeyError:
self.gnd_name = "gnd"
self.out_dir = out_dir
self.sram = sram
self.sp_file = sp_file
self.use_model = use_model
self.pred_time = None
self.set_port_indices()
self.prepare_tables()
self.create_corners()
self.characterize_corners()
def set_port_indices(self):
"""Copies port information set in the SRAM instance"""
self.total_port_num = len(self.sram.all_ports)
self.all_ports = self.sram.all_ports
self.readwrite_ports = self.sram.readwrite_ports
self.read_ports = self.sram.read_ports
self.write_ports = self.sram.write_ports
def prepare_tables(self):
""" Determine the load/slews if they aren't specified in the config file. """
# These are the parameters to determine the table sizes
if OPTS.use_specified_load_slew == None:
self.load_scales = np.array(OPTS.load_scales)
self.load = tech.spice["dff_in_cap"]
self.loads = self.load_scales * self.load
self.slew_scales = np.array(OPTS.slew_scales)
self.slew = tech.spice["rise_time"]
self.slews = self.slew_scales * self.slew
self.load_slews = []
for slew in self.slews:
for load in self.loads:
self.load_slews.append((load, slew))
else:
debug.warning("Using the option \"use_specified_load_slew\" will make load slew,data in lib file inaccurate.")
self.load_slews = OPTS.use_specified_load_slew
self.loads = []
self.slews = []
for load,slew in self.load_slews:
self.loads.append(load)
self.slews.append(slew)
self.loads = np.array(self.loads)
self.slews = np.array(self.slews)
debug.info(1, "Slews: {0}".format(self.slews))
debug.info(1, "Loads: {0}".format(self.loads))
debug.info(1, "self.load_slews : {0}".format(self.load_slews))
def create_corners(self):
""" Create corners for characterization. """
# Get the corners from the options file
self.temperatures = OPTS.temperatures
self.supply_voltages = OPTS.supply_voltages
self.process_corners = OPTS.process_corners
# Corner values
min_temperature = min(self.temperatures)
nom_temperature = tech.spice["nom_temperature"]
max_temperature = max(self.temperatures)
min_supply = min(self.supply_voltages)
nom_supply = tech.spice["nom_supply_voltage"]
max_supply = max(self.supply_voltages)
min_process = "FF"
nom_process = "TT"
max_process = "SS"
self.corners = []
self.lib_files = []
if OPTS.use_specified_corners == None:
# Nominal corner
corner_tuples = set()
if OPTS.only_use_config_corners:
if OPTS.nominal_corner_only:
debug.warning("Nominal corner only option ignored if use only config corners is set.")
# Generate a powerset of input PVT lists
for p in self.process_corners:
for v in self.supply_voltages:
for t in self.temperatures:
corner_tuples.add((p, v, t))
else:
nom_corner = (nom_process, nom_supply, nom_temperature)
corner_tuples.add(nom_corner)
if not OPTS.nominal_corner_only:
# Temperature corners
corner_tuples.add((nom_process, nom_supply, min_temperature))
corner_tuples.add((nom_process, nom_supply, max_temperature))
# Supply corners
corner_tuples.add((nom_process, min_supply, nom_temperature))
corner_tuples.add((nom_process, max_supply, nom_temperature))
# Process corners
corner_tuples.add((min_process, nom_supply, nom_temperature))
corner_tuples.add((max_process, nom_supply, nom_temperature))
# Enforce that nominal corner is the first to be characterized
self.add_corner(*nom_corner)
corner_tuples.remove(nom_corner)
else:
corner_tuples = OPTS.use_specified_corners
for corner_tuple in corner_tuples:
self.add_corner(*corner_tuple)
def add_corner(self, proc, volt, temp):
self.corner_name = "{0}_{1}_{2}V_{3}C".format(self.sram.name,
proc,
volt,
temp)
self.corner_name = self.corner_name.replace(".","p") # Remove decimals
lib_name = self.out_dir+"{}.lib".format(self.corner_name)
# A corner is a tuple of PVT
self.corners.append((proc, volt, temp))
self.lib_files.append(lib_name)
def characterize_corners(self):
""" Characterize the list of corners. """
debug.info(1,"Characterizing corners: " + str(self.corners))
is_first_corner = True
for (self.corner,lib_name) in zip(self.corners,self.lib_files):
run_start = time.time()
debug.info(1,"Corner: " + str(self.corner))
(self.process, self.voltage, self.temperature) = self.corner
self.lib = open(lib_name, "w")
debug.info(1,"Writing to {0}".format(lib_name))
self.corner_name = lib_name.replace(self.out_dir,"").replace(".lib","")
self.characterize()
self.lib.close()
if self.pred_time == None:
total_time = time.time()-run_start
else:
total_time = self.pred_time
self.parse_info(self.corner,lib_name, is_first_corner, total_time)
is_first_corner = False
def characterize(self):
""" Characterize the current corner. """
self.compute_delay()
self.compute_setup_hold()
self.write_header()
# Loop over all ports.
for port in self.all_ports:
# set the read and write port as inputs.
self.write_data_bus(port)
self.write_addr_bus(port)
if self.sram.write_size and port in self.write_ports:
self.write_wmask_bus(port)
# need to split this into sram and port control signals
self.write_control_pins(port)
self.write_clk_timing_power(port)
self.write_footer()
def write_footer(self):
""" Write the footer """
self.lib.write(" }\n") #Closing brace for the cell
self.lib.write("}\n") #Closing brace for the library
def write_header(self):
""" Write the header information """
self.lib.write("library ({0}_lib)".format(self.corner_name))
self.lib.write("{\n")
self.lib.write(" delay_model : \"table_lookup\";\n")
self.write_units()
self.write_defaults()
self.write_LUT_templates()
self.lib.write(" default_operating_conditions : OC; \n")
self.write_bus()
self.lib.write("cell ({0})".format(self.sram.name))
self.lib.write("{\n")
self.lib.write(" memory(){ \n")
self.lib.write(" type : ram;\n")
self.lib.write(" address_width : {};\n".format(self.sram.addr_size))
self.lib.write(" word_width : {};\n".format(self.sram.word_size))
self.lib.write(" }\n")
self.lib.write(" interface_timing : true;\n")
self.lib.write(" dont_use : true;\n")
self.lib.write(" map_only : true;\n")
self.lib.write(" dont_touch : true;\n")
self.lib.write(" area : {};\n\n".format(self.sram.width * self.sram.height))
self.write_pg_pin()
#Build string of all control signals.
control_str = 'csb0' #assume at least 1 port
for i in range(1, self.total_port_num):
control_str += ' & csb{0}'.format(i)
# Leakage is included in dynamic when macro is enabled
self.lib.write(" leakage_power () {\n")
# 'when' condition unnecessary when cs pin does not turn power to devices
# self.lib.write(" when : \"{0}\";\n".format(control_str))
self.lib.write(" value : {};\n".format(self.char_sram_results["leakage_power"]))
self.lib.write(" }\n")
self.lib.write(" cell_leakage_power : {};\n".format(self.char_sram_results["leakage_power"]))
def write_units(self):
""" Adds default units for time, voltage, current,...
Valid values are 1mV, 10mV, 100mV, and 1V.
For time: Valid values are 1ps, 10ps, 100ps, and 1ns.
For power: Valid values are 1mW, 100uW (for 100mW), 10uW (for 10mW),
1uW (for 1mW), 100nW, 10nW, 1nW, 100pW, 10pW, and 1pW.
"""
self.lib.write(" time_unit : \"1ns\" ;\n")
self.lib.write(" voltage_unit : \"1V\" ;\n")
self.lib.write(" current_unit : \"1mA\" ;\n")
self.lib.write(" resistance_unit : \"1kohm\" ;\n")
self.lib.write(" capacitive_load_unit(1, pF) ;\n")
self.lib.write(" leakage_power_unit : \"1mW\" ;\n")
self.lib.write(" pulling_resistance_unit :\"1kohm\" ;\n")
self.lib.write(" operating_conditions(OC){\n")
self.lib.write(" process : {} ;\n".format(1.0)) # How to use TT, FF, SS?
self.lib.write(" voltage : {} ;\n".format(self.voltage))
self.lib.write(" temperature : {};\n".format(self.temperature))
self.lib.write(" }\n\n")
def write_defaults(self):
""" Adds default values for slew and capacitance."""
self.lib.write(" input_threshold_pct_fall : 50.0 ;\n")
self.lib.write(" output_threshold_pct_fall : 50.0 ;\n")
self.lib.write(" input_threshold_pct_rise : 50.0 ;\n")
self.lib.write(" output_threshold_pct_rise : 50.0 ;\n")
self.lib.write(" slew_lower_threshold_pct_fall : 10.0 ;\n")
self.lib.write(" slew_upper_threshold_pct_fall : 90.0 ;\n")
self.lib.write(" slew_lower_threshold_pct_rise : 10.0 ;\n")
self.lib.write(" slew_upper_threshold_pct_rise : 90.0 ;\n\n")
self.lib.write(" nom_voltage : {};\n".format(self.voltage))
self.lib.write(" nom_temperature : {};\n".format(self.temperature))
self.lib.write(" nom_process : 1.0;\n")
self.lib.write(" default_cell_leakage_power : 0.0 ;\n")
self.lib.write(" default_leakage_power_density : 0.0 ;\n")
self.lib.write(" default_input_pin_cap : 1.0 ;\n")
self.lib.write(" default_inout_pin_cap : 1.0 ;\n")
self.lib.write(" default_output_pin_cap : 0.0 ;\n")
self.lib.write(" default_max_transition : 0.5 ;\n")
self.lib.write(" default_fanout_load : 1.0 ;\n")
self.lib.write(" default_max_fanout : 4.0 ;\n")
self.lib.write(" default_connection_class : universal ;\n\n")
self.lib.write(" voltage_map ( {0}, {1} );\n".format(self.vdd_name.upper(), self.voltage))
self.lib.write(" voltage_map ( {0}, 0 );\n\n".format(self.gnd_name.upper()))
def create_list(self,values):
""" Helper function to create quoted, line wrapped list """
list_values = ", ".join(str(v) for v in values)
return "\"{0}\"".format(list_values)
def create_array(self,values, length):
""" Helper function to create quoted, line wrapped array with each row of given length """
# check that the length is a multiple or give an error!
debug.check(len(values)%length == 0,"Values are not a multiple of the length. Cannot make a full array.")
rounded_values = list(map(round_time,values))
split_values = [rounded_values[i:i+length] for i in range(0, len(rounded_values), length)]
formatted_rows = list(map(self.create_list,split_values))
formatted_array = ",\\\n".join(formatted_rows)
return formatted_array
def write_index(self, number, values):
""" Write the index """
quoted_string = self.create_list(values)
self.lib.write(" index_{0}({1});\n".format(number,quoted_string))
def write_values(self, values, row_length, indent):
""" Write the index """
quoted_string = self.create_array(values, row_length)
# indent each newline plus extra spaces for word values
indented_string = quoted_string.replace('\n', '\n' + indent +" ")
self.lib.write("{0}values({1});\n".format(indent,indented_string))
def write_LUT_templates(self):
""" Adds lookup_table format (A 1x1 lookup_table)."""
Tran = ["CELL_TABLE"]
for i in Tran:
self.lib.write(" lu_table_template({0})".format(i))
self.lib.write("{\n")
self.lib.write(" variable_1 : input_net_transition;\n")
self.lib.write(" variable_2 : total_output_net_capacitance;\n")
self.write_index(1,self.slews)
# Dividing by 1000 to all cap values since output of .sp is in fF,
# and it needs to be in pF for Innovus.
self.write_index(2,self.loads/1000)
self.lib.write(" }\n\n")
CONS = ["CONSTRAINT_TABLE"]
for i in CONS:
self.lib.write(" lu_table_template({0})".format(i))
self.lib.write("{\n")
self.lib.write(" variable_1 : related_pin_transition;\n")
self.lib.write(" variable_2 : constrained_pin_transition;\n")
self.write_index(1,self.slews)
self.write_index(2,self.slews)
self.lib.write(" }\n\n")
# self.lib.write(" lu_table_template(CLK_TRAN) {\n")
# self.lib.write(" variable_1 : constrained_pin_transition;\n")
# self.write_index(1,self.slews)
# self.lib.write(" }\n\n")
# self.lib.write(" lu_table_template(TRAN) {\n")
# self.lib.write(" variable_1 : total_output_net_capacitance;\n")
# self.write_index(1,self.slews)
# self.lib.write(" }\n\n")
# CONS2 = ["INPUT_BY_TRANS_FOR_CLOCK" , "INPUT_BY_TRANS_FOR_SIGNAL"]
# for i in CONS2:
# self.lib.write(" power_lut_template({0})".format(i))
# self.lib.write("{\n")
# self.lib.write(" variable_1 : input_transition_time;\n")
# #self.write_index(1,self.slews)
# self.write_index(1,[self.slews[0]])
# self.lib.write(" }\n\n")
def write_bus(self):
""" Adds format of data and addr bus."""
self.lib.write("\n\n")
self.lib.write(" type (data){\n")
self.lib.write(" base_type : array;\n")
self.lib.write(" data_type : bit;\n")
self.lib.write(" bit_width : {0};\n".format(self.sram.word_size))
self.lib.write(" bit_from : {0};\n".format(self.sram.word_size - 1))
self.lib.write(" bit_to : 0;\n")
self.lib.write(" }\n\n")
self.lib.write(" type (addr){\n")
self.lib.write(" base_type : array;\n")
self.lib.write(" data_type : bit;\n")
self.lib.write(" bit_width : {0};\n".format(self.sram.addr_size))
self.lib.write(" bit_from : {0};\n".format(self.sram.addr_size - 1))
self.lib.write(" bit_to : 0;\n")
self.lib.write(" }\n\n")
if self.sram.write_size:
self.lib.write(" type (wmask){\n")
self.lib.write(" base_type : array;\n")
self.lib.write(" data_type : bit;\n")
self.lib.write(" bit_width : {0};\n".format(self.sram.num_wmasks))
self.lib.write(" bit_from : {0};\n".format(self.sram.num_wmasks - 1))
self.lib.write(" bit_to : 0;\n")
self.lib.write(" }\n\n")
def write_FF_setuphold(self, port):
""" Adds Setup and Hold timing results"""
self.lib.write(" timing(){ \n")
self.lib.write(" timing_type : setup_rising; \n")
self.lib.write(" related_pin : \"clk{0}\"; \n".format(port))
self.lib.write(" rise_constraint(CONSTRAINT_TABLE) {\n")
rounded_values = list(map(round_time,self.times["setup_times_LH"]))
self.write_values(rounded_values,len(self.slews)," ")
self.lib.write(" }\n")
self.lib.write(" fall_constraint(CONSTRAINT_TABLE) {\n")
rounded_values = list(map(round_time,self.times["setup_times_HL"]))
self.write_values(rounded_values,len(self.slews)," ")
self.lib.write(" }\n")
self.lib.write(" }\n")
self.lib.write(" timing(){ \n")
self.lib.write(" timing_type : hold_rising; \n")
self.lib.write(" related_pin : \"clk{0}\"; \n".format(port))
self.lib.write(" rise_constraint(CONSTRAINT_TABLE) {\n")
rounded_values = list(map(round_time,self.times["hold_times_LH"]))
self.write_values(rounded_values,len(self.slews)," ")
self.lib.write(" }\n")
self.lib.write(" fall_constraint(CONSTRAINT_TABLE) {\n")
rounded_values = list(map(round_time,self.times["hold_times_HL"]))
self.write_values(rounded_values,len(self.slews)," ")
self.lib.write(" }\n")
self.lib.write(" }\n")
def write_data_bus_output(self, read_port):
""" Adds data bus timing results."""
self.lib.write(" bus(dout{0}){{\n".format(read_port))
self.lib.write(" bus_type : data; \n")
self.lib.write(" direction : output; \n")
# This is conservative, but limit to range that we characterized.
self.lib.write(" max_capacitance : {0}; \n".format(max(self.loads)/1000))
self.lib.write(" min_capacitance : {0}; \n".format(min(self.loads)/1000))
self.lib.write(" memory_read(){ \n")
self.lib.write(" address : addr{0}; \n".format(read_port))
self.lib.write(" }\n")
self.lib.write(" pin(dout{0}[{1}:0]){{\n".format(read_port,self.sram.word_size-1))
self.lib.write(" timing(){ \n")
self.lib.write(" timing_sense : non_unate; \n")
self.lib.write(" related_pin : \"clk{0}\"; \n".format(read_port))
self.lib.write(" timing_type : falling_edge; \n")
self.lib.write(" cell_rise(CELL_TABLE) {\n")
self.write_values(self.char_port_results[read_port]["delay_lh"],len(self.loads)," ")
self.lib.write(" }\n") # rise delay
self.lib.write(" cell_fall(CELL_TABLE) {\n")
self.write_values(self.char_port_results[read_port]["delay_hl"],len(self.loads)," ")
self.lib.write(" }\n") # fall delay
self.lib.write(" rise_transition(CELL_TABLE) {\n")
self.write_values(self.char_port_results[read_port]["slew_lh"],len(self.loads)," ")
self.lib.write(" }\n") # rise trans
self.lib.write(" fall_transition(CELL_TABLE) {\n")
self.write_values(self.char_port_results[read_port]["slew_hl"],len(self.loads)," ")
self.lib.write(" }\n") # fall trans
self.lib.write(" }\n") # timing
self.lib.write(" }\n") # pin
self.lib.write(" }\n\n") # bus
def write_data_bus_input(self, write_port):
""" Adds din data bus timing results."""
self.lib.write(" bus(din{0}){{\n".format(write_port))
self.lib.write(" bus_type : data; \n")
self.lib.write(" direction : input; \n")
# This is conservative, but limit to range that we characterized.
self.lib.write(" capacitance : {0}; \n".format(tech.spice["dff_in_cap"]/1000))
self.lib.write(" memory_write(){ \n")
self.lib.write(" address : addr{0}; \n".format(write_port))
self.lib.write(" clocked_on : clk{0}; \n".format(write_port))
self.lib.write(" }\n")
self.lib.write(" pin(din{0}[{1}:0]){{\n".format(write_port,self.sram.word_size-1))
self.write_FF_setuphold(write_port)
self.lib.write(" }\n") # pin
self.lib.write(" }\n") #bus
def write_data_bus(self, port):
""" Adds data bus timing results."""
if port in self.write_ports:
self.write_data_bus_input(port)
if port in self.read_ports:
self.write_data_bus_output(port)
def write_addr_bus(self, port):
""" Adds addr bus timing results."""
self.lib.write(" bus(addr{0}){{\n".format(port))
self.lib.write(" bus_type : addr; \n")
self.lib.write(" direction : input; \n")
self.lib.write(" capacitance : {0}; \n".format(tech.spice["dff_in_cap"]/1000))
self.lib.write(" max_transition : {0};\n".format(self.slews[-1]))
self.lib.write(" pin(addr{0}[{1}:0])".format(port,self.sram.addr_size-1))
self.lib.write("{\n")
self.write_FF_setuphold(port)
self.lib.write(" }\n")
self.lib.write(" }\n\n")
def write_wmask_bus(self, port):
""" Adds addr bus timing results."""
self.lib.write(" bus(wmask{0}){{\n".format(port))
self.lib.write(" bus_type : wmask; \n")
self.lib.write(" direction : input; \n")
self.lib.write(" capacitance : {0}; \n".format(tech.spice["dff_in_cap"] / 1000))
self.lib.write(" max_transition : {0};\n".format(self.slews[-1]))
self.lib.write(" pin(wmask{0}[{1}:0])".format(port, self.sram.num_wmasks - 1))
self.lib.write("{\n")
self.write_FF_setuphold(port)
self.lib.write(" }\n")
self.lib.write(" }\n\n")
def write_control_pins(self, port):
""" Adds control pins timing results."""
#The control pins are still to be determined. This is a placeholder for what could be.
ctrl_pin_names = ["csb{0}".format(port)]
if port in self.readwrite_ports:
ctrl_pin_names.append("web{0}".format(port))
for i in ctrl_pin_names:
self.lib.write(" pin({0})".format(i))
self.lib.write("{\n")
self.lib.write(" direction : input; \n")
self.lib.write(" capacitance : {0}; \n".format(tech.spice["dff_in_cap"]/1000))
self.write_FF_setuphold(port)
self.lib.write(" }\n\n")
def write_clk_timing_power(self, port):
""" Adds clk pin timing results."""
self.lib.write(" pin(clk{0}){{\n".format(port))
self.lib.write(" clock : true;\n")
self.lib.write(" direction : input; \n")
# FIXME: This depends on the clock buffer size in the control logic
self.lib.write(" capacitance : {0}; \n".format(tech.spice["dff_in_cap"]/1000))
self.add_clk_control_power(port)
min_pulse_width = round_time(self.char_sram_results["min_period"])/2.0
min_period = round_time(self.char_sram_results["min_period"])
self.lib.write(" timing(){ \n")
self.lib.write(" timing_type :\"min_pulse_width\"; \n")
self.lib.write(" related_pin : clk{0}; \n".format(port))
self.lib.write(" rise_constraint(scalar) {\n")
self.lib.write(" values(\"{0}\"); \n".format(min_pulse_width))
self.lib.write(" }\n")
self.lib.write(" fall_constraint(scalar) {\n")
self.lib.write(" values(\"{0}\"); \n".format(min_pulse_width))
self.lib.write(" }\n")
self.lib.write(" }\n")
self.lib.write(" timing(){ \n")
self.lib.write(" timing_type :\"minimum_period\"; \n")
self.lib.write(" related_pin : clk{0}; \n".format(port))
self.lib.write(" rise_constraint(scalar) {\n")
self.lib.write(" values(\"{0}\"); \n".format(min_period))
self.lib.write(" }\n")
self.lib.write(" fall_constraint(scalar) {\n")
self.lib.write(" values(\"{0}\"); \n".format(min_period))
self.lib.write(" }\n")
self.lib.write(" }\n")
self.lib.write(" }\n\n")
def add_clk_control_power(self, port):
"""Writes powers under the clock pin group for a specified port"""
#Web added to read/write ports. Likely to change when control logic finished.
web_name = ""
if port in self.write_ports:
if port in self.read_ports:
web_name = " & !web{0}".format(port)
write1_power = np.mean(self.char_port_results[port]["write1_power"])
write0_power = np.mean(self.char_port_results[port]["write0_power"])
self.lib.write(" internal_power(){\n")
self.lib.write(" when : \"!csb{0}{1}\"; \n".format(port, web_name))
self.lib.write(" rise_power(scalar){\n")
self.lib.write(" values(\"{0:.6e}\");\n".format(write1_power))
self.lib.write(" }\n")
self.lib.write(" fall_power(scalar){\n")
self.lib.write(" values(\"{0:.6e}\");\n".format(write0_power))
self.lib.write(" }\n")
self.lib.write(" }\n")
# Disabled power.
disabled_write1_power = np.mean(self.char_port_results[port]["disabled_write1_power"])
disabled_write0_power = np.mean(self.char_port_results[port]["disabled_write0_power"])
self.lib.write(" internal_power(){\n")
self.lib.write(" when : \"csb{0}{1}\"; \n".format(port, web_name))
self.lib.write(" rise_power(scalar){\n")
self.lib.write(" values(\"{0:.6e}\");\n".format(disabled_write1_power))
self.lib.write(" }\n")
self.lib.write(" fall_power(scalar){\n")
self.lib.write(" values(\"{0:.6e}\");\n".format(disabled_write0_power))
self.lib.write(" }\n")
self.lib.write(" }\n")
if port in self.read_ports:
if port in self.write_ports:
web_name = " & web{0}".format(port)
read1_power = np.mean(self.char_port_results[port]["read1_power"])
read0_power = np.mean(self.char_port_results[port]["read0_power"])
self.lib.write(" internal_power(){\n")
self.lib.write(" when : \"!csb{0}{1}\"; \n".format(port, web_name))
self.lib.write(" rise_power(scalar){\n")
self.lib.write(" values(\"{0:.6e}\");\n".format(read1_power))
self.lib.write(" }\n")
self.lib.write(" fall_power(scalar){\n")
self.lib.write(" values(\"{0:.6e}\");\n".format(read0_power))
self.lib.write(" }\n")
self.lib.write(" }\n")
# Disabled power.
disabled_read1_power = np.mean(self.char_port_results[port]["disabled_read1_power"])
disabled_read0_power = np.mean(self.char_port_results[port]["disabled_read0_power"])
self.lib.write(" internal_power(){\n")
self.lib.write(" when : \"csb{0}{1}\"; \n".format(port, web_name))
self.lib.write(" rise_power(scalar){\n")
self.lib.write(" values(\"{0:.6e}\");\n".format(disabled_read1_power))
self.lib.write(" }\n")
self.lib.write(" fall_power(scalar){\n")
self.lib.write(" values(\"{0:.6e}\");\n".format(disabled_read0_power))
self.lib.write(" }\n")
self.lib.write(" }\n")
def write_pg_pin(self):
self.lib.write(" pg_pin({0}) ".format(self.vdd_name) + "{\n")
self.lib.write(" voltage_name : {};\n".format(self.vdd_name.upper()))
self.lib.write(" pg_type : primary_power;\n")
self.lib.write(" }\n\n")
self.lib.write(" pg_pin({0}) ".format(self.gnd_name) + "{\n")
self.lib.write(" voltage_name : {};\n".format(self.gnd_name.upper()))
self.lib.write(" pg_type : primary_ground;\n")
self.lib.write(" }\n\n")
def compute_delay(self):
"""Compute SRAM delays for current corner"""
if self.use_model:
model_name_lc = OPTS.model_name.lower()
if model_name_lc == "linear_regression":
from .linear_regression import linear_regression as model
elif model_name_lc == "elmore":
from .elmore import elmore as model
elif model_name_lc == "neural_network":
from .neural_network import neural_network as model
elif model_name_lc == "cacti":
from .cacti import cacti as model
else:
debug.error("{} model not recognized. See options.py for available models.".format(OPTS.model_name))
m = model(self.sram, self.sp_file, self.corner)
char_results = m.get_lib_values(self.load_slews)
else:
self.d = delay(self.sram, self.sp_file, self.corner)
if (self.sram.num_spare_rows == 0):
probe_address = "1" * self.sram.addr_size
else:
probe_address = "0" + "1" * (self.sram.addr_size - 1)
probe_data = self.sram.word_size - 1
char_results = self.d.analyze(probe_address, probe_data, self.load_slews)
self.char_sram_results, self.char_port_results = char_results
if 'sim_time' in self.char_sram_results:
self.pred_time = self.char_sram_results['sim_time']
# Add to the OPTS to be written out as part of the extended OPTS file
# FIXME: Temporarily removed from characterization output
# if not self.use_model:
# OPTS.sen_path_delays = self.char_sram_results["sen_path_measures"]
# OPTS.sen_path_names = self.char_sram_results["sen_path_names"]
# OPTS.bl_path_delays = self.char_sram_results["bl_path_measures"]
# OPTS.bl_path_names = self.char_sram_results["bl_path_names"]
def compute_setup_hold(self):
""" Do the analysis if we haven't characterized a FF yet """
# Do the analysis if we haven't characterized a FF yet
if not hasattr(self,"sh"):
self.sh = setup_hold(self.corner)
if self.use_model:
self.times = self.sh.analytical_setuphold(self.slews,self.slews)
else:
self.times = self.sh.analyze(self.slews,self.slews)
def parse_info(self,corner,lib_name, is_first_corner, time):
""" Copies important characterization data to datasheet.info to be added to datasheet """
if OPTS.output_datasheet_info:
datasheet_path = OPTS.output_path
else:
datasheet_path = OPTS.openram_temp
# Open for write and truncate to not conflict with a previous run using the same name
if is_first_corner:
datasheet = open(datasheet_path +'/datasheet.info', 'w')
else:
datasheet = open(datasheet_path +'/datasheet.info', 'a+')
self.write_inp_params_datasheet(datasheet, corner, lib_name)
self.write_signal_from_ports(datasheet,
"din{1}[{0}:0]".format(self.sram.word_size - 1, '{}'),
self.write_ports,
"setup_times_LH",
"setup_times_HL",
"hold_times_LH",
"hold_times_HL")
# self.write_signal_from_ports(datasheet,
# "dout{1}[{0}:0]".format(self.sram.word_size - 1, '{}'),
# self.read_ports,
# "delay_lh",
# "delay_hl",
# "slew_lh",
# "slew_hl")
for port in self.all_ports:
#dout timing
if port in self.read_ports:
datasheet.write("{0},{1},{2},{3},{4},{5},{6},{7},{8},".format(
"dout{1}[{0}:0]".format(self.sram.word_size - 1, port),
min(list(map(round_time,self.char_port_results[port]["delay_lh"]))),
max(list(map(round_time,self.char_port_results[port]["delay_lh"]))),
min(list(map(round_time,self.char_port_results[port]["delay_hl"]))),
max(list(map(round_time,self.char_port_results[port]["delay_hl"]))),
min(list(map(round_time,self.char_port_results[port]["slew_lh"]))),
max(list(map(round_time,self.char_port_results[port]["slew_lh"]))),
min(list(map(round_time,self.char_port_results[port]["slew_hl"]))),
max(list(map(round_time,self.char_port_results[port]["slew_hl"])))
))
self.write_signal_from_ports(datasheet,
"csb{}",
self.all_ports,
"setup_times_LH",
"setup_times_HL",
"hold_times_LH",
"hold_times_HL")
self.write_signal_from_ports(datasheet,
"addr{1}[{0}:0]".format(self.sram.addr_size - 1, '{}'),
self.all_ports,
"setup_times_LH",
"setup_times_HL",
"hold_times_LH",
"hold_times_HL")
self.write_signal_from_ports(datasheet,
"web{}",
self.readwrite_ports,
"setup_times_LH",
"setup_times_HL",
"hold_times_LH",
"hold_times_HL")
self.write_power_datasheet(datasheet)
self.write_model_params(datasheet, time)
datasheet.write("END\n")
datasheet.close()
def write_inp_params_datasheet(self, datasheet, corner, lib_name):
if OPTS.is_unit_test:
git_id = 'FFFFFFFFFFFFFFFFFFFF'
else:
with open(os.devnull, 'wb') as devnull:
# parses the most recent git commit id - reason for global git dependancy
proc = subprocess.Popen(['git','rev-parse','HEAD'], cwd=os.path.abspath(os.environ.get("OPENRAM_HOME")) + '/', stdout=subprocess.PIPE)
git_id = str(proc.stdout.read())
try:
git_id = git_id[2:-3]
except:
pass
# check if git id is valid
if len(git_id) != 40:
debug.warning("Failed to retrieve git id")
git_id = 'Failed to retrieve'
current_time = datetime.date.today()
# write static information to be parser later
datasheet.write("{0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10},{11},{12},{13},{14},{15},{16},".format(
OPTS.output_name,
OPTS.num_words,
OPTS.num_banks,
OPTS.num_rw_ports,
OPTS.num_w_ports,
OPTS.num_r_ports,
OPTS.tech_name,
corner[2],
corner[1],
corner[0],
round_time(self.char_sram_results["min_period"]),
self.out_dir,
lib_name,
OPTS.word_size,
git_id,
current_time,
OPTS.analytical_delay
))
# information of checks
# run it only the first time
datasheet.write("{0},{1},".format(self.sram.drc_errors, self.sram.lvs_errors))
# write area
datasheet.write(str(self.sram.width * self.sram.height) + ',')
def write_signal_from_ports(self, datasheet, signal, ports, time_pos_1, time_pos_2, time_pos_3, time_pos_4):
for port in ports:
datasheet.write("{0},{1},{2},{3},{4},{5},{6},{7},{8},".format(
signal.format(port),
min(list(map(round_time,self.times[time_pos_1]))),
max(list(map(round_time,self.times[time_pos_1]))),
min(list(map(round_time,self.times[time_pos_2]))),
max(list(map(round_time,self.times[time_pos_2]))),
min(list(map(round_time,self.times[time_pos_3]))),
max(list(map(round_time,self.times[time_pos_3]))),
min(list(map(round_time,self.times[time_pos_4]))),
max(list(map(round_time,self.times[time_pos_4])))
))
def write_power_datasheet(self, datasheet):
# write power information
for port in self.all_ports:
name = ''
read_write = ''
# write dynamic power usage
if port in self.read_ports:
web_name = " & !web{0}".format(port)
name = "!csb{0} & clk{0}{1}".format(port, web_name)
read_write = 'Read'
datasheet.write("{0},{1},{2},{3},".format(
"power",
name,
read_write,
np.mean(self.char_port_results[port]["read1_power"] + self.char_port_results[port]["read0_power"])/2
))
if port in self.write_ports:
web_name = " & web{0}".format(port)
name = "!csb{0} & !clk{0}{1}".format(port, web_name)
read_write = 'Write'
datasheet.write("{0},{1},{2},{3},".format(
'power',
name,
read_write,
np.mean(self.char_port_results[port]["write1_power"] + self.char_port_results[port]["write0_power"])/2
))
# write leakage power
control_str = 'csb0'
for i in range(1, self.total_port_num):
control_str += ' & csb{0}'.format(i)
datasheet.write("{0},{1},{2},".format('leak', control_str, self.char_sram_results["leakage_power"]))
def write_model_params(self, datasheet, time):
"""Write values which will be used in the analytical model as inputs"""
datasheet.write("{0},{1},".format('sim_time', time))
datasheet.write("{0},{1},".format('words_per_row', OPTS.words_per_row))
datasheet.write("{0},{1},".format('slews', list(self.slews)))
datasheet.write("{0},{1},".format('loads', list(self.loads)))
for port in self.read_ports:
datasheet.write("{0},{1},".format('cell_rise_{}'.format(port), self.char_port_results[port]["delay_lh"]))
datasheet.write("{0},{1},".format('cell_fall_{}'.format(port), self.char_port_results[port]["delay_hl"]))
datasheet.write("{0},{1},".format('rise_transition_{}'.format(port), self.char_port_results[port]["slew_lh"]))
datasheet.write("{0},{1},".format('fall_transition_{}'.format(port), self.char_port_results[port]["slew_hl"]))
for port in self.write_ports:
write1_power = np.mean(self.char_port_results[port]["write1_power"])
write0_power = np.mean(self.char_port_results[port]["write0_power"])
datasheet.write("{0},{1},".format('write_rise_power_{}'.format(port), write1_power))
#FIXME: should be write_fall_power
datasheet.write("{0},{1},".format('write_fall_power_{}'.format(port), write0_power))
for port in self.read_ports:
read1_power = np.mean(self.char_port_results[port]["read1_power"])
read0_power = np.mean(self.char_port_results[port]["read0_power"])
datasheet.write("{0},{1},".format('read_rise_power_{}'.format(port), read1_power))
#FIXME: should be read_fall_power
datasheet.write("{0},{1},".format('read_fall_power_{}'.format(port), read0_power))