OpenRAM/compiler/gdsMill/mpmath/functions/zeta.py

694 lines
21 KiB
Python

from functions import defun, defun_wrapped, defun_static
@defun
def stieltjes(ctx, n, a=1):
n = ctx.convert(n)
a = ctx.convert(a)
if n < 0:
return ctx.bad_domain("Stieltjes constants defined for n >= 0")
if hasattr(ctx, "stieltjes_cache"):
stieltjes_cache = ctx.stieltjes_cache
else:
stieltjes_cache = ctx.stieltjes_cache = {}
if a == 1:
if n == 0:
return +ctx.euler
if n in stieltjes_cache:
prec, s = stieltjes_cache[n]
if prec >= ctx.prec:
return +s
mag = 1
def f(x):
xa = x/a
v = (xa-ctx.j)*ctx.ln(a-ctx.j*x)**n/(1+xa**2)/(ctx.exp(2*ctx.pi*x)-1)
return ctx._re(v) / mag
orig = ctx.prec
try:
# Normalize integrand by approx. magnitude to
# speed up quadrature (which uses absolute error)
if n > 50:
ctx.prec = 20
mag = ctx.quad(f, [0,ctx.inf], maxdegree=3)
ctx.prec = orig + 10 + int(n**0.5)
s = ctx.quad(f, [0,ctx.inf], maxdegree=20)
v = ctx.ln(a)**n/(2*a) - ctx.ln(a)**(n+1)/(n+1) + 2*s/a*mag
finally:
ctx.prec = orig
if a == 1 and ctx.isint(n):
stieltjes_cache[n] = (ctx.prec, v)
return +v
@defun_wrapped
def siegeltheta(ctx, t):
if ctx._im(t):
# XXX: cancellation occurs
a = ctx.loggamma(0.25+0.5j*t)
b = ctx.loggamma(0.25-0.5j*t)
return -ctx.ln(ctx.pi)/2*t - 0.5j*(a-b)
else:
if ctx.isinf(t):
return t
return ctx._im(ctx.loggamma(0.25+0.5j*t)) - ctx.ln(ctx.pi)/2*t
@defun_wrapped
def grampoint(ctx, n):
# asymptotic expansion, from
# http://mathworld.wolfram.com/GramPoint.html
g = 2*ctx.pi*ctx.exp(1+ctx.lambertw((8*n+1)/(8*ctx.e)))
return ctx.findroot(lambda t: ctx.siegeltheta(t)-ctx.pi*n, g)
@defun_wrapped
def siegelz(ctx, t):
v = ctx.expj(ctx.siegeltheta(t))*ctx.zeta(0.5+ctx.j*t)
if ctx._is_real_type(t):
return ctx._re(v)
return v
_zeta_zeros = [
14.134725142,21.022039639,25.010857580,30.424876126,32.935061588,
37.586178159,40.918719012,43.327073281,48.005150881,49.773832478,
52.970321478,56.446247697,59.347044003,60.831778525,65.112544048,
67.079810529,69.546401711,72.067157674,75.704690699,77.144840069,
79.337375020,82.910380854,84.735492981,87.425274613,88.809111208,
92.491899271,94.651344041,95.870634228,98.831194218,101.317851006,
103.725538040,105.446623052,107.168611184,111.029535543,111.874659177,
114.320220915,116.226680321,118.790782866,121.370125002,122.946829294,
124.256818554,127.516683880,129.578704200,131.087688531,133.497737203,
134.756509753,138.116042055,139.736208952,141.123707404,143.111845808,
146.000982487,147.422765343,150.053520421,150.925257612,153.024693811,
156.112909294,157.597591818,158.849988171,161.188964138,163.030709687,
165.537069188,167.184439978,169.094515416,169.911976479,173.411536520,
174.754191523,176.441434298,178.377407776,179.916484020,182.207078484,
184.874467848,185.598783678,187.228922584,189.416158656,192.026656361,
193.079726604,195.265396680,196.876481841,198.015309676,201.264751944,
202.493594514,204.189671803,205.394697202,207.906258888,209.576509717,
211.690862595,213.347919360,214.547044783,216.169538508,219.067596349,
220.714918839,221.430705555,224.007000255,224.983324670,227.421444280,
229.337413306,231.250188700,231.987235253,233.693404179,236.524229666,
]
def _load_zeta_zeros(url):
import urllib
d = urllib.urlopen(url)
L = [float(x) for x in d.readlines()]
# Sanity check
assert round(L[0]) == 14
_zeta_zeros[:] = L
@defun
def zetazero(ctx, n, url='http://www.dtc.umn.edu/~odlyzko/zeta_tables/zeros1'):
n = int(n)
if n < 0:
return ctx.zetazero(-n).conjugate()
if n == 0:
raise ValueError("n must be nonzero")
if n > len(_zeta_zeros) and n <= 100000:
_load_zeta_zeros(url)
if n > len(_zeta_zeros):
raise NotImplementedError("n too large for zetazeros")
return ctx.mpc(0.5, ctx.findroot(ctx.siegelz, _zeta_zeros[n-1]))
@defun_wrapped
def riemannr(ctx, x):
if x == 0:
return ctx.zero
# Check if a simple asymptotic estimate is accurate enough
if abs(x) > 1000:
a = ctx.li(x)
b = 0.5*ctx.li(ctx.sqrt(x))
if abs(b) < abs(a)*ctx.eps:
return a
if abs(x) < 0.01:
# XXX
ctx.prec += int(-ctx.log(abs(x),2))
# Sum Gram's series
s = t = ctx.one
u = ctx.ln(x)
k = 1
while abs(t) > abs(s)*ctx.eps:
t = t * u / k
s += t / (k * ctx._zeta_int(k+1))
k += 1
return s
@defun_static
def primepi(ctx, x):
x = int(x)
if x < 2:
return 0
return len(ctx.list_primes(x))
@defun_wrapped
def primepi2(ctx, x):
x = int(x)
if x < 2:
return ctx.mpi(0,0)
if x < 2657:
return ctx.mpi(ctx.primepi(x))
mid = ctx.li(x)
# Schoenfeld's estimate for x >= 2657, assuming RH
err = ctx.sqrt(x,rounding='u')*ctx.ln(x,rounding='u')/8/ctx.pi(rounding='d')
a = ctx.floor((ctx.mpi(mid)-err).a, rounding='d')
b = ctx.ceil((ctx.mpi(mid)+err).b, rounding='u')
return ctx.mpi(a, b)
@defun_wrapped
def primezeta(ctx, s):
if ctx.isnan(s):
return s
if ctx.re(s) <= 0:
raise ValueError("prime zeta function defined only for re(s) > 0")
if s == 1:
return ctx.inf
if s == 0.5:
return ctx.mpc(ctx.ninf, ctx.pi)
r = ctx.re(s)
if r > ctx.prec:
return 0.5**s
else:
wp = ctx.prec + int(r)
def terms():
orig = ctx.prec
# zeta ~ 1+eps; need to set precision
# to get logarithm accurately
k = 0
while 1:
k += 1
u = ctx.moebius(k)
if not u:
continue
ctx.prec = wp
t = u*ctx.ln(ctx.zeta(k*s))/k
if not t:
return
#print ctx.prec, ctx.nstr(t)
ctx.prec = orig
yield t
return ctx.sum_accurately(terms)
# TODO: for bernpoly and eulerpoly, ensure that all exact zeros are covered
@defun_wrapped
def bernpoly(ctx, n, z):
# Slow implementation:
#return sum(ctx.binomial(n,k)*ctx.bernoulli(k)*z**(n-k) for k in xrange(0,n+1))
n = int(n)
if n < 0:
raise ValueError("Bernoulli polynomials only defined for n >= 0")
if z == 0 or (z == 1 and n > 1):
return ctx.bernoulli(n)
if z == 0.5:
return (ctx.ldexp(1,1-n)-1)*ctx.bernoulli(n)
if n <= 3:
if n == 0: return z ** 0
if n == 1: return z - 0.5
if n == 2: return (6*z*(z-1)+1)/6
if n == 3: return z*(z*(z-1.5)+0.5)
if abs(z) == ctx.inf:
return z ** n
if z != z:
return z
if abs(z) > 2:
def terms():
t = ctx.one
yield t
r = ctx.one/z
k = 1
while k <= n:
t = t*(n+1-k)/k*r
if not (k > 2 and k & 1):
yield t*ctx.bernoulli(k)
k += 1
return ctx.sum_accurately(terms) * z**n
else:
def terms():
yield ctx.bernoulli(n)
t = ctx.one
k = 1
while k <= n:
t = t*(n+1-k)/k * z
m = n-k
if not (m > 2 and m & 1):
yield t*ctx.bernoulli(m)
k += 1
return ctx.sum_accurately(terms)
@defun_wrapped
def eulerpoly(ctx, n, z):
n = int(n)
if n < 0:
raise ValueError("Euler polynomials only defined for n >= 0")
if n <= 2:
if n == 0: return z ** 0
if n == 1: return z - 0.5
if n == 2: return z*(z-1)
if abs(z) == ctx.inf:
return z**n
if z != z:
return z
m = n+1
if z == 0:
return -2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0
if z == 1:
return 2*(ctx.ldexp(1,m)-1)*ctx.bernoulli(m)/m * z**0
if z == 0.5:
if n % 2:
return ctx.zero
# Use exact code for Euler numbers
if n < 100 or n*ctx.mag(0.46839865*n) < ctx.prec*0.25:
return ctx.ldexp(ctx._eulernum(n), -n)
# http://functions.wolfram.com/Polynomials/EulerE2/06/01/02/01/0002/
def terms():
t = ctx.one
k = 0
w = ctx.ldexp(1,n+2)
while 1:
v = n-k+1
if not (v > 2 and v & 1):
yield (2-w)*ctx.bernoulli(v)*t
k += 1
if k > n:
break
t = t*z*(n-k+2)/k
w *= 0.5
return ctx.sum_accurately(terms) / m
@defun
def eulernum(ctx, n, exact=False):
n = int(n)
if exact:
return int(ctx._eulernum(n))
if n < 100:
return ctx.mpf(ctx._eulernum(n))
if n % 2:
return ctx.zero
return ctx.ldexp(ctx.eulerpoly(n,0.5), n)
# TODO: this should be implemented low-level
def polylog_series(ctx, s, z):
tol = +ctx.eps
l = ctx.zero
k = 1
zk = z
while 1:
term = zk / k**s
l += term
if abs(term) < tol:
break
zk *= z
k += 1
return l
def polylog_continuation(ctx, n, z):
if n < 0:
return z*0
twopij = 2j * ctx.pi
a = -twopij**n/ctx.fac(n) * ctx.bernpoly(n, ctx.ln(z)/twopij)
if ctx._is_real_type(z) and z < 0:
a = ctx._re(a)
if ctx._im(z) < 0 or (ctx._im(z) == 0 and ctx._re(z) >= 1):
a -= twopij*ctx.ln(z)**(n-1)/ctx.fac(n-1)
return a
def polylog_unitcircle(ctx, n, z):
tol = +ctx.eps
if n > 1:
l = ctx.zero
logz = ctx.ln(z)
logmz = ctx.one
m = 0
while 1:
if (n-m) != 1:
term = ctx.zeta(n-m) * logmz / ctx.fac(m)
if term and abs(term) < tol:
break
l += term
logmz *= logz
m += 1
l += ctx.ln(z)**(n-1)/ctx.fac(n-1)*(ctx.harmonic(n-1)-ctx.ln(-ctx.ln(z)))
elif n < 1: # else
l = ctx.fac(-n)*(-ctx.ln(z))**(n-1)
logz = ctx.ln(z)
logkz = ctx.one
k = 0
while 1:
b = ctx.bernoulli(k-n+1)
if b:
term = b*logkz/(ctx.fac(k)*(k-n+1))
if abs(term) < tol:
break
l -= term
logkz *= logz
k += 1
else:
raise ValueError
if ctx._is_real_type(z) and z < 0:
l = ctx._re(l)
return l
def polylog_general(ctx, s, z):
v = ctx.zero
u = ctx.ln(z)
if not abs(u) < 5: # theoretically |u| < 2*pi
raise NotImplementedError("polylog for arbitrary s and z")
t = 1
k = 0
while 1:
term = ctx.zeta(s-k) * t
if abs(term) < ctx.eps:
break
v += term
k += 1
t *= u
t /= k
return ctx.gamma(1-s)*(-u)**(s-1) + v
@defun_wrapped
def polylog(ctx, s, z):
s = ctx.convert(s)
z = ctx.convert(z)
if z == 1:
return ctx.zeta(s)
if z == -1:
return -ctx.altzeta(s)
if s == 0:
return z/(1-z)
if s == 1:
return -ctx.ln(1-z)
if s == -1:
return z/(1-z)**2
if abs(z) <= 0.75 or (not ctx.isint(s) and abs(z) < 0.9):
return polylog_series(ctx, s, z)
if abs(z) >= 1.4 and ctx.isint(s):
return (-1)**(s+1)*polylog_series(ctx, s, 1/z) + polylog_continuation(ctx, s, z)
if ctx.isint(s):
return polylog_unitcircle(ctx, int(s), z)
return polylog_general(ctx, s, z)
#raise NotImplementedError("polylog for arbitrary s and z")
# This could perhaps be used in some cases
#from quadrature import quad
#return quad(lambda t: t**(s-1)/(exp(t)/z-1),[0,inf])/gamma(s)
@defun_wrapped
def clsin(ctx, s, z, pi=False):
if ctx.isint(s) and s < 0 and int(s) % 2 == 1:
return z*0
if pi:
a = ctx.expjpi(z)
else:
a = ctx.expj(z)
if ctx._is_real_type(z) and ctx._is_real_type(s):
return ctx.im(ctx.polylog(s,a))
b = 1/a
return (-0.5j)*(ctx.polylog(s,a) - ctx.polylog(s,b))
@defun_wrapped
def clcos(ctx, s, z, pi=False):
if ctx.isint(s) and s < 0 and int(s) % 2 == 0:
return z*0
if pi:
a = ctx.expjpi(z)
else:
a = ctx.expj(z)
if ctx._is_real_type(z) and ctx._is_real_type(s):
return ctx.re(ctx.polylog(s,a))
b = 1/a
return 0.5*(ctx.polylog(s,a) + ctx.polylog(s,b))
@defun
def altzeta(ctx, s, **kwargs):
try:
return ctx._altzeta(s, **kwargs)
except NotImplementedError:
return ctx._altzeta_generic(s)
@defun_wrapped
def _altzeta_generic(ctx, s):
if s == 1:
return ctx.ln2 + 0*s
return -ctx.powm1(2, 1-s) * ctx.zeta(s)
@defun
def zeta(ctx, s, a=1, derivative=0, method=None, **kwargs):
d = int(derivative)
if a == 1 and not (d or method):
try:
return ctx._zeta(s, **kwargs)
except NotImplementedError:
pass
s = ctx.convert(s)
prec = ctx.prec
method = kwargs.get('method')
verbose = kwargs.get('verbose')
if a == 1 and method != 'euler-maclaurin':
im = abs(ctx._im(s))
re = abs(ctx._re(s))
#if (im < prec or method == 'borwein') and not derivative:
# try:
# if verbose:
# print "zeta: Attempting to use the Borwein algorithm"
# return ctx._zeta(s, **kwargs)
# except NotImplementedError:
# if verbose:
# print "zeta: Could not use the Borwein algorithm"
# pass
if abs(im) > 60*prec and 10*re < prec and derivative <= 4 or \
method == 'riemann-siegel':
try: # py2.4 compatible try block
try:
if verbose:
print "zeta: Attempting to use the Riemann-Siegel algorithm"
return ctx.rs_zeta(s, derivative, **kwargs)
except NotImplementedError:
if verbose:
print "zeta: Could not use the Riemann-Siegel algorithm"
pass
finally:
ctx.prec = prec
if s == 1:
return ctx.inf
abss = abs(s)
if abss == ctx.inf:
if ctx.re(s) == ctx.inf:
if d == 0:
return ctx.one
return ctx.zero
return s*0
elif ctx.isnan(abss):
return 1/s
if ctx.re(s) > 2*ctx.prec and a == 1 and not derivative:
return ctx.one + ctx.power(2, -s)
if verbose:
print "zeta: Using the Euler-Maclaurin algorithm"
prec = ctx.prec
try:
ctx.prec += 10
v = ctx._hurwitz(s, a, d)
finally:
ctx.prec = prec
return +v
@defun
def _hurwitz(ctx, s, a=1, d=0):
# We strongly want to special-case rational a
a, atype = ctx._convert_param(a)
prec = ctx.prec
# TODO: implement reflection for derivatives
res = ctx.re(s)
negs = -s
try:
if res < 0 and not d:
# Integer reflection formula
if ctx.isnpint(s):
n = int(res)
if n <= 0:
return ctx.bernpoly(1-n, a) / (n-1)
t = 1-s
# We now require a to be standardized
v = 0
shift = 0
b = a
while ctx.re(b) > 1:
b -= 1
v -= b**negs
shift -= 1
while ctx.re(b) <= 0:
v += b**negs
b += 1
shift += 1
# Rational reflection formula
if atype == 'Q' or atype == 'Z':
try:
p, q = a
except:
assert a == int(a)
p = int(a)
q = 1
p += shift*q
assert 1 <= p <= q
g = ctx.fsum(ctx.cospi(t/2-2*k*b)*ctx._hurwitz(t,(k,q)) \
for k in range(1,q+1))
g *= 2*ctx.gamma(t)/(2*ctx.pi*q)**t
v += g
return v
# General reflection formula
else:
C1 = ctx.cospi(t/2)
C2 = ctx.sinpi(t/2)
# Clausen functions; could maybe use polylog directly
if C1: C1 *= ctx.clcos(t, 2*a, pi=True)
if C2: C2 *= ctx.clsin(t, 2*a, pi=True)
v += 2*ctx.gamma(t)/(2*ctx.pi)**t*(C1+C2)
return v
except NotImplementedError:
pass
a = ctx.convert(a)
tol = -prec
# Estimate number of terms for Euler-Maclaurin summation; could be improved
M1 = 0
M2 = prec // 3
N = M2
lsum = 0
# This speeds up the recurrence for derivatives
if ctx.isint(s):
s = int(ctx._re(s))
s1 = s-1
while 1:
# Truncated L-series
l = ctx._zetasum(s, M1+a, M2-M1-1, [d])[0][0]
#if d:
# l = ctx.fsum((-ctx.ln(n+a))**d * (n+a)**negs for n in range(M1,M2))
#else:
# l = ctx.fsum((n+a)**negs for n in range(M1,M2))
lsum += l
M2a = M2+a
logM2a = ctx.ln(M2a)
logM2ad = logM2a**d
logs = [logM2ad]
logr = 1/logM2a
rM2a = 1/M2a
M2as = rM2a**s
if d:
tailsum = ctx.gammainc(d+1, s1*logM2a) / s1**(d+1)
else:
tailsum = 1/((s1)*(M2a)**s1)
tailsum += 0.5 * logM2ad * M2as
U = [1]
r = M2as
fact = 2
for j in range(1, N+1):
# TODO: the following could perhaps be tidied a bit
j2 = 2*j
if j == 1:
upds = [1]
else:
upds = [j2-2, j2-1]
for m in upds:
D = min(m,d+1)
if m <= d:
logs.append(logs[-1] * logr)
Un = [0]*(D+1)
for i in xrange(D): Un[i] = (1-m-s)*U[i]
for i in xrange(1,D+1): Un[i] += (d-(i-1))*U[i-1]
U = Un
r *= rM2a
t = ctx.fdot(U, logs) * r * ctx.bernoulli(j2)/(-fact)
tailsum += t
if ctx.mag(t) < tol:
return lsum + (-1)**d * tailsum
fact *= (j2+1)*(j2+2)
M1, M2 = M2, M2*2
@defun
def _zetasum(ctx, s, a, n, derivatives=[0], reflect=False):
"""
Returns [xd0,xd1,...,xdr], [yd0,yd1,...ydr] where
xdk = D^k ( 1/a^s + 1/(a+1)^s + ... + 1/(a+n)^s )
ydk = D^k conj( 1/a^(1-s) + 1/(a+1)^(1-s) + ... + 1/(a+n)^(1-s) )
D^k = kth derivative with respect to s, k ranges over the given list of
derivatives (which should consist of either a single element
or a range 0,1,...r). If reflect=False, the ydks are not computed.
"""
try:
return ctx._zetasum_fast(s, a, n, derivatives, reflect)
except NotImplementedError:
pass
negs = ctx.fneg(s, exact=True)
have_derivatives = derivatives != [0]
have_one_derivative = len(derivatives) == 1
if not reflect:
if not have_derivatives:
return [ctx.fsum((a+k)**negs for k in xrange(n+1))], []
if have_one_derivative:
d = derivatives[0]
x = ctx.fsum(ctx.ln(a+k)**d * (a+k)**negs for k in xrange(n+1))
return [(-1)**d * x], []
maxd = max(derivatives)
if not have_one_derivative:
derivatives = range(maxd+1)
xs = [ctx.zero for d in derivatives]
if reflect:
ys = [ctx.zero for d in derivatives]
else:
ys = []
for k in xrange(n+1):
w = a + k
xterm = w ** negs
if reflect:
yterm = ctx.conj(ctx.one / (w * xterm))
if have_derivatives:
logw = -ctx.ln(w)
if have_one_derivative:
logw = logw ** maxd
xs[0] += xterm * logw
if reflect:
ys[0] += yterm * logw
else:
t = ctx.one
for d in derivatives:
xs[d] += xterm * t
if reflect:
ys[d] += yterm * t
t *= logw
else:
xs[0] += xterm
if reflect:
ys[0] += yterm
return xs, ys
@defun
def dirichlet(ctx, s, chi=[1], derivative=0):
s = ctx.convert(s)
q = len(chi)
d = int(derivative)
if d > 2:
raise NotImplementedError("arbitrary order derivatives")
prec = ctx.prec
try:
ctx.prec += 10
if s == 1:
have_pole = True
for x in chi:
if x and x != 1:
have_pole = False
h = +ctx.eps
ctx.prec *= 2*(d+1)
s += h
if have_pole:
return +ctx.inf
z = ctx.zero
for p in range(1,q+1):
if chi[p%q]:
if d == 1:
z += chi[p%q] * (ctx.zeta(s, (p,q), 1) - \
ctx.zeta(s, (p,q))*ctx.log(q))
else:
z += chi[p%q] * ctx.zeta(s, (p,q))
z /= q**s
finally:
ctx.prec = prec
return +z