OpenRAM/compiler/base/channel_route.py

554 lines
25 KiB
Python

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2024 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
# This version aims to keep the track out/vertical to the dff pins
# Now only consider the channel at the south, but works fine with channel at the north
import collections
from openram import debug
from openram.tech import drc
from .vector import vector
from .design import design
class channel_net():
def __init__(self, net_name, pins, vertical):
self.name = net_name
self.pins = pins
self.vertical = vertical
# Keep track of the internval
if vertical:
self.min_value = min(i.by() for i in pins)
self.max_value = max(i.uy() for i in pins)
else:
self.min_value = min(i.lx() for i in pins)
self.max_value = max(i.rx() for i in pins)
# Keep track of the conflicts
self.conflicts = []
def __str__(self):
return self.name
def __repr__(self):
return self.name
def __lt__(self, other):
return self.min_value < other.min_value
def pin_overlap(self, pin1, pin2, pitch):
""" Check for vertical or horizontal overlap of the two pins """
# FIXME: If the pins are not in a row, this may break.
# However, a top pin shouldn't overlap another top pin,
# for example, so the extra comparison *shouldn't* matter.
# Pin 1 must be in the "BOTTOM" set
x_overlap = pin1.by() < pin2.by() and abs(pin1.center().x - pin2.center().x) < pitch
# Pin 1 must be in the "LEFT" set
y_overlap = pin1.lx() < pin2.lx() and abs(pin1.center().y - pin2.center().y) < pitch
overlaps = (not self.vertical and x_overlap) or (self.vertical and y_overlap)
return overlaps
def pins_overlap(self, other, pitch):
"""
Check all the pin pairs on two nets and return a pin
overlap if any pin overlaps.
"""
for pin1 in self.pins:
for pin2 in other.pins:
if self.pin_overlap(pin1, pin2, pitch):
return True
return False
def segment_overlap(self, other):
"""
Check if the horizontal span of the two nets overlaps eachother.
"""
min_overlap = self.min_value >= other.min_value and self.min_value <= other.max_value
max_overlap = self.max_value >= other.min_value and self.max_value <= other.max_value
return min_overlap or max_overlap
class channel_route(design):
unique_id = 0
def __init__(self,
netlist,
offset,
layer_stack,
directions=None,
vertical=False,
parent=None,
dff_area=False):
"""
The net list is a list of the nets with each net being a list of pins
to be connected. The offset is the lower-left of where the
routing channel will start. This does NOT try to minimize the
number of tracks -- instead, it picks an order to avoid the
vertical conflicts between pins. The track size must be the number of
nets times the *nonpreferred* routing of the non-track layer pitch.
"""
name = "cr_{0}".format(channel_route.unique_id)
channel_route.unique_id += 1
super().__init__(name)
self.netlist = netlist
self.offset = offset
self.layer_stack = layer_stack
self.directions = directions
self.vertical = vertical
# For debugging...
self.parent = parent
self.dff_area = dff_area # this is a special value to handle dff areas, should be true when routing col_dff/dffs
if not directions or directions == "pref":
# Use the preferred layer directions
if self.get_preferred_direction(layer_stack[0]) == "V":
self.vertical_layer = layer_stack[0]
self.horizontal_layer = layer_stack[2]
else:
self.vertical_layer = layer_stack[2]
self.horizontal_layer = layer_stack[0]
elif directions == "nonpref":
# Use the preferred layer directions
if self.get_preferred_direction(layer_stack[0]) == "V":
self.vertical_layer = layer_stack[2]
self.horizontal_layer = layer_stack[0]
else:
self.vertical_layer = layer_stack[0]
self.horizontal_layer = layer_stack[2]
else:
# Use the layer directions specified to the router rather than
# the preferred directions
debug.check(directions[0] != directions[1], "Must have unique layer directions.")
if directions[0] == "V":
self.vertical_layer = layer_stack[0]
self.horizontal_layer = layer_stack[2]
else:
self.horizontal_layer = layer_stack[0]
self.vertical_layer = layer_stack[2]
layer_stuff = self.get_layer_pitch(self.vertical_layer)
(self.vertical_nonpref_pitch, self.vertical_pitch, self.vertical_width, self.vertical_space) = layer_stuff
layer_stuff = self.get_layer_pitch(self.horizontal_layer)
(self.horizontal_nonpref_pitch, self.horizontal_pitch, self.horizontal_width, self.horizontal_space) = layer_stuff
# For debug
debug.warning("layer horizontal: {0}".format(self.horizontal_layer))
debug.warning("horizontal_nonpref_pitch: {0}".format(self.horizontal_nonpref_pitch))
debug.warning("horizontal_pitch: {0}".format(self.horizontal_pitch))
debug.warning("horizontal_space: {0}".format(self.horizontal_space))
debug.warning("layer vertical: {0}".format(self.vertical_layer))
debug.warning("vertiacl_nonpref_pitch: {0}".format(self.vertical_pitch))
debug.warning("vertical_pitch: {0}".format(self.vertical_pitch))
debug.warning("vertical_space: {0}".format(self.vertical_space))
self.route()
def remove_net_from_graph(self, pin, g):
"""
Remove the pin from the graph and all conflicts
"""
g.pop(pin, None)
# Remove the pin from all conflicts
# FIXME: This is O(n^2), so maybe optimize it.
for other_pin, conflicts in g.items():
if pin in conflicts:
g[other_pin].remove(pin)
return g
def route(self):
# Create names for the nets for the graphs
nets = []
index = 0
# print(self.netlist)
for pin_list in self.netlist:
nets.append(channel_net("n{}".format(index), pin_list, self.vertical))
index += 1
# Create the (undirected) horizontal constraint graph
hcg = collections.OrderedDict()
for net1 in nets:
for net2 in nets:
if net1.name == net2.name:
continue
if net1.segment_overlap(net2):
try:
hcg[net1.name].add(net2.name)
except KeyError:
hcg[net1.name] = set([net2.name])
try:
hcg[net2.name].add(net1.name)
except KeyError:
hcg[net2.name] = set([net1.name])
# Initialize the vertical conflict graph (vcg)
# and make a list of all pins
vcg = collections.OrderedDict()
# print("Nets:")
# for net_name in nets:
# print(net_name, [x.name for x in nets[net_name]])
# Find the vertical pin conflicts
# FIXME: O(n^2) but who cares for now
if self.vertical:
pitch = self.horizontal_nonpref_pitch
else:
pitch = self.vertical_nonpref_pitch
for net in nets:
vcg[net.name] = set()
for net1 in nets:
for net2 in nets:
# Skip yourself
if net1.name == net2.name:
continue
if net1.pins_overlap(net2, pitch):
vcg[net2.name].add(net1.name)
# Check if there are any cycles net1 <---> net2 in the VCG
# Some of the pins may be to the left/below the channel offset,
# so adjust if this is the case
self.min_value = min([n.min_value for n in nets])
self.max_value = min([n.max_value for n in nets])
if self.vertical:
real_channel_offset = vector(self.offset.x, min(self.min_value, self.offset.y))
else:
real_channel_offset = vector(min(self.min_value, self.offset.x), self.offset.y)
current_offset = real_channel_offset
if self.dff_area == True:
if self.layer_stack == self.m2_stack:
self.vertical_nonpref_pitch = self.horizontal_pitch + 0.1 # 0.1 make sure even if via at same col, fulfill m3-m3 spacing
# Sort nets by left edge value
nets.sort()
while len(nets) > 0:
current_offset_value = current_offset.y if self.vertical else current_offset.x
# from pprint import pformat
# print("VCG:\n", pformat(vcg))
# for name,net in vcg.items():
# print(name, net.min_value, net.max_value, net.conflicts)
# print(current_offset)
# get a route from conflict graph with empty fanout set
for net in nets:
# If it has no conflicts and the interval is to the right of the current offset in the track
if net.min_value >= current_offset_value and len(vcg[net.name]) == 0:
# print("Routing {}".format(net.name))
# Add the trunk routes from the bottom up for
# horizontal or the left to right for vertical
if self.vertical:
self.add_vertical_trunk_route(net.pins,
current_offset,
self.horizontal_pitch)
current_offset = vector(current_offset.x, net.max_value + self.horizontal_nonpref_pitch)
else:
if self.dff_area == True: # only use in dff channel routing
self.add_horizontal_trunk_with_jog(net.pins,
current_offset,
self.vertical_pitch)
else:
self.add_horizontal_trunk_route(net.pins,
current_offset,
self.vertical_pitch)
current_offset = vector(net.max_value + self.vertical_nonpref_pitch, current_offset.y)
# Remove the net from other constriants in the VCG
vcg = self.remove_net_from_graph(net.name, vcg)
nets.remove(net)
break
else:
# If we made a full pass and the offset didn't change...
current_offset_value = current_offset.y if self.vertical else current_offset.x
initial_offset_value = real_channel_offset.y if self.vertical else real_channel_offset.x
if current_offset_value == initial_offset_value:
debug.info(0, "Channel offset: {}".format(real_channel_offset))
debug.info(0, "Current offset: {}".format(current_offset))
debug.info(0, "VCG {}".format(str(vcg)))
debug.info(0, "HCG {}".format(str(hcg)))
for net in nets:
debug.info(0, "{0} pin: {1}".format(net.name, str(net.pins)))
if self.parent:
debug.info(0, "Saving vcg.gds")
self.parent.gds_write("vcg.gds")
debug.error("Cyclic VCG in channel router.", -1)
# Increment the track and reset the offset to the start (like a typewriter)
if self.vertical:
current_offset = vector(current_offset.x + self.horizontal_nonpref_pitch, real_channel_offset.y)
else:
current_offset = vector(real_channel_offset.x, current_offset.y + self.vertical_nonpref_pitch)
# Return the size of the channel
if self.vertical:
self.width = current_offset.x + self.horizontal_nonpref_pitch - self.offset.x
self.height = self.max_value + self.vertical_nonpref_pitch - self.offset.y
else:
self.width = self.max_value + self.horizontal_nonpref_pitch - self.offset.x
self.height = current_offset.y + self.vertical_nonpref_pitch - self.offset.y
def get_layer_pitch(self, layer):
""" Return the track pitch on a given layer """
try:
# FIXME: Using non-pref pitch here due to overlap bug in VCG constraints.
# It should just result in inefficient channel width but will work.
pitch = getattr(self, "{}_pitch".format(layer))
nonpref_pitch = getattr(self, "{}_nonpref_pitch".format(layer))
space = getattr(self, "{}_space".format(layer))
except AttributeError:
debug.error("Cannot find layer pitch.", -1)
return (nonpref_pitch, pitch, pitch - space, space)
def add_horizontal_trunk_with_jog(self,
pins,
trunk_offset,
pitch):
""" Special for connecting channel of dffs & bank, avoid too close with vdd pins """
max_x = max([pin.center().x for pin in pins])
min_x = min([pin.center().x for pin in pins])
min_y = min([pin.center().y for pin in pins])
# see the channel is at top or bottom
if min_y < 0: # port0, min_x need to change
min_x = min_x - 0.1 # in order to add jog at the dff pins, avoid overlap with vdd pins, left shift vertical line at dout pin
port = 0
else: # port1, max_x need to change
max_x = max_x - 0.1 # in order to add jog at the dff pins, avoid overlap with vdd pins, left shift vertical line at dout pin
port = 1
# if we are less than a pitch, just create a non-preferred layer jog
non_preferred_route = max_x - min_x <= pitch
half_layer_width = 0.5 * drc["minwidth_{0}".format(self.vertical_layer)]
if port == 0: # bottom need shift
if non_preferred_route:
# Add the horizontal trunk on the vertical layer!
self.add_path(self.vertical_layer,
[vector(min_x - half_layer_width, trunk_offset.y),
vector(max_x + half_layer_width, trunk_offset.y)])
# Route each pin to the trunk
for pin in pins:
if pin.cy() < trunk_offset.y:
pin_pos = pin.center()
mid = vector(pin_pos.x - 0.1, trunk_offset.y)
self.add_path(self.vertical_layer, [vector(pin.bc().x - 0.1, pin.bc().y), mid])
self.add_via_stack_center(from_layer=pin.layer,
to_layer=self.vertical_layer,
offset=pin_pos)
else:
pin_pos = pin.bc()
# No bend needed here
mid = vector(pin_pos.x, trunk_offset.y)
self.add_path(self.vertical_layer, [pin_pos, mid])
self.add_via_stack_center(from_layer=pin.layer,
to_layer=self.vertical_layer,
offset=pin.bc())
else:
# Add the horizontal trunk
self.add_path(self.horizontal_layer,
[vector(min_x, trunk_offset.y),
vector(max_x, trunk_offset.y)])
# Route each pin to the trunk
for pin in pins:
# Find the correct side of the pin
if pin.cy() < trunk_offset.y:
pin_pos = pin.center()
mid = vector(pin_pos.x - 0.1, trunk_offset.y)
self.add_path(self.vertical_layer, [vector(pin.bc().x - 0.1, pin.bc().y), mid])
self.add_via_center(layers=self.layer_stack,
offset=mid,
directions=self.directions)
self.add_via_stack_center(from_layer=pin.layer,
to_layer=self.vertical_layer,
offset=pin_pos)
else:
pin_pos = pin.bc()
mid = vector(pin_pos.x, trunk_offset.y)
self.add_path(self.vertical_layer, [pin_pos, mid])
self.add_via_center(layers=self.layer_stack,
offset=mid,
directions=self.directions)
self.add_via_stack_center(from_layer=pin.layer,
to_layer=self.vertical_layer,
offset=pin.bc())
else: # port 1, situation different, top need shift
if non_preferred_route:
# Add the horizontal trunk on the vertical layer!
self.add_path(self.vertical_layer,
[vector(min_x - half_layer_width, trunk_offset.y),
vector(max_x + half_layer_width, trunk_offset.y)])
# Route each pin to the trunk
for pin in pins:
if pin.cy() < trunk_offset.y:
pin_pos = pin.uc()
# No bend needed here
mid = vector(pin_pos.x, trunk_offset.y)
self.add_path(self.vertical_layer, [pin_pos, mid])
self.add_via_stack_center(from_layer=pin.layer,
to_layer=self.vertical_layer,
offset=pin.uc())
else:
pin_pos = pin.center()
mid = vector(pin_pos.x - 0.1, trunk_offset.y)
self.add_path(self.vertical_layer, [vector(pin.uc().x - 0.1, pin.uc().y), mid])
self.add_via_stack_center(from_layer=pin.layer,
to_layer=self.vertical_layer,
offset=pin_pos)
else:
# Add the horizontal trunk
self.add_path(self.horizontal_layer,
[vector(min_x, trunk_offset.y),
vector(max_x, trunk_offset.y)])
# Route each pin to the trunk
for pin in pins:
# Find the correct side of the pin
if pin.cy() < trunk_offset.y:
pin_pos = pin.uc()
mid = vector(pin_pos.x, trunk_offset.y)
self.add_path(self.vertical_layer, [pin_pos, mid])
self.add_via_center(layers=self.layer_stack,
offset=mid,
directions=self.directions)
self.add_via_stack_center(from_layer=pin.layer,
to_layer=self.vertical_layer,
offset=pin.uc())
else:
pin_pos = pin.center()
mid = vector(pin_pos.x - 0.1, trunk_offset.y)
self.add_path(self.vertical_layer, [vector(pin.uc().x - 0.1, pin.uc().y), mid])
self.add_via_center(layers=self.layer_stack,
offset=mid,
directions=self.directions)
self.add_via_stack_center(from_layer=pin.layer,
to_layer=self.vertical_layer,
offset=pin_pos)
def add_horizontal_trunk_route(self,
pins,
trunk_offset,
pitch):
"""
Create a trunk route for all pins with
the trunk located at the given y offset.
"""
max_x = max([pin.center().x for pin in pins])
min_x = min([pin.center().x for pin in pins])
# if we are less than a pitch, just create a non-preferred layer jog
non_preferred_route = max_x - min_x <= pitch
if non_preferred_route:
half_layer_width = 0.5 * drc["minwidth_{0}".format(self.vertical_layer)]
# Add the horizontal trunk on the vertical layer!
self.add_path(self.vertical_layer,
[vector(min_x - half_layer_width, trunk_offset.y),
vector(max_x + half_layer_width, trunk_offset.y)])
# Route each pin to the trunk
for pin in pins:
if pin.cy() < trunk_offset.y:
pin_pos = pin.uc()
else:
pin_pos = pin.bc()
# No bend needed here
mid = vector(pin_pos.x, trunk_offset.y)
self.add_path(self.vertical_layer, [pin_pos, mid])
else:
# Add the horizontal trunk
self.add_path(self.horizontal_layer,
[vector(min_x, trunk_offset.y),
vector(max_x, trunk_offset.y)])
# Route each pin to the trunk
for pin in pins:
# Find the correct side of the pin
if pin.cy() < trunk_offset.y:
pin_pos = pin.uc()
else:
pin_pos = pin.bc()
mid = vector(pin_pos.x, trunk_offset.y)
self.add_path(self.vertical_layer, [pin_pos, mid])
if not non_preferred_route:
self.add_via_center(layers=self.layer_stack,
offset=mid,
directions=self.directions)
self.add_via_stack_center(from_layer=pin.layer,
to_layer=self.vertical_layer,
offset=pin_pos)
def add_vertical_trunk_route(self,
pins,
trunk_offset,
pitch):
"""
Create a trunk route for all pins with the
trunk located at the given x offset.
"""
max_y = max([pin.center().y for pin in pins])
min_y = min([pin.center().y for pin in pins])
# if we are less than a pitch, just create a non-preferred layer jog
non_preferred_route = max_y - min_y <= pitch
if non_preferred_route:
half_layer_width = 0.5 * drc["minwidth_{0}".format(self.horizontal_layer)]
# Add the vertical trunk on the horizontal layer!
self.add_path(self.horizontal_layer,
[vector(trunk_offset.x, min_y - half_layer_width),
vector(trunk_offset.x, max_y + half_layer_width)])
# Route each pin to the trunk
for pin in pins:
# Find the correct side of the pin
if pin.cx() < trunk_offset.x:
pin_pos = pin.rc()
else:
pin_pos = pin.lc()
# No bend needed here
mid = vector(trunk_offset.x, pin_pos.y)
self.add_path(self.horizontal_layer, [pin_pos, mid])
else:
# Add the vertical trunk
self.add_path(self.vertical_layer,
[vector(trunk_offset.x, min_y),
vector(trunk_offset.x, max_y)])
# Route each pin to the trunk
for pin in pins:
# Find the correct side of the pin
if pin.cx() < trunk_offset.x:
pin_pos = pin.rc()
else:
pin_pos = pin.lc()
mid = vector(trunk_offset.x, pin_pos.y)
self.add_path(self.horizontal_layer, [pin_pos, mid])
if not non_preferred_route:
self.add_via_center(layers=self.layer_stack,
offset=mid,
directions=self.directions)
self.add_via_stack_center(from_layer=pin.layer,
to_layer=self.horizontal_layer,
offset=pin_pos)