OpenRAM/technology/scn4m_subm/tech/tech.py

304 lines
11 KiB
Python

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import os
from design_rules import *
"""
File containing the process technology parameters for SCMOS 4m, 0.35um
"""
#GDS file info
GDS={}
# gds units
# From http://www.cnf.cornell.edu/cnf_spie9.html: "The first
#is the size of a database unit in user units. The second is the size
#of a database unit in meters. For example, if your library was
#created with the default units (user unit = 1 m and 1000 database
#units per user unit), then the first number would be 0.001 and the
#second number would be 10-9. Typically, the first number is less than
#1, since you use more than 1 database unit per user unit. To
#calculate the size of a user unit in meters, divide the second number
#by the first."
GDS["unit"]=(0.001,1e-6)
# default label zoom
GDS["zoom"] = 0.5
###################################################
##GDS Layer Map
###################################################
# create the GDS layer map
layer={}
layer["vtg"] = None
layer["vth"] = None
layer["pwell"] = (41, 0)
layer["nwell"] = (42, 0)
layer["active"] = (43, 0)
layer["pimplant"] = (44, 0)
layer["nimplant"] = (45, 0)
layer["poly"] = (46, 0)
layer["poly_contact"] = None
layer["contact"] = (47, 0)
layer["active_contact"] = (48, 0)
layer["metal1"] = (49, 0)
layer["via1"] = (50, 0)
layer["metal2"] = (51, 0)
layer["via2"] = (61, 0)
layer["metal3"] = (62, 0)
layer["via3"] = (30, 0)
layer["metal4"] = (31, 0)
layer["text"] = (63, 0)
layer["boundary"] = (63, 0)
###################################################
##END GDS Layer Map
###################################################
###################################################
##DRC/LVS Rules Setup
###################################################
_lambda_ = 0.2
#technology parameter
parameter={}
parameter["min_tx_size"] = 4*_lambda_
parameter["beta"] = 2
# These 6T sizes are used in the parameterized bitcell.
parameter["6T_inv_nmos_size"] = 8*_lambda_
parameter["6T_inv_pmos_size"] = 3*_lambda_
parameter["6T_access_size"] = 4*_lambda_
drclvs_home=os.environ.get("DRCLVS_HOME")
drc = design_rules("scn4me_sub")
#grid size is 1/2 a lambda
drc["grid"]=0.5*_lambda_
#DRC/LVS test set_up
drc["drc_rules"]=None #drclvs_home+"/calibreDRC_scn3me_subm.rul"
drc["lvs_rules"]=None #drclvs_home+"/calibreLVS_scn3me_subm.rul"
drc["layer_map"]=os.environ.get("OPENRAM_TECH")+"/scn3me_subm/layers.map"
# minwidth_tx with contact (no dog bone transistors)
drc["minwidth_tx"] = 4*_lambda_
drc["minlength_channel"] = 2*_lambda_
# 1.3 Minimum spacing between wells of same type (if both are drawn)
drc["well_to_well"] = 6*_lambda_
# 1.4 Minimum spacing between wells of different type (if both are drawn)
drc["pwell_to_nwell"] = 0
# 1.1 Minimum width
drc["minwidth_well"] = 12*_lambda_
# 3.1 Minimum width
drc["minwidth_poly"] = 2*_lambda_
# 3.2 Minimum spacing over active
drc["poly_to_poly"] = 3*_lambda_
# 3.3 Minimum gate extension of active
drc["poly_extend_active"] = 2*_lambda_
# 5.5.b Minimum spacing between poly contact and other poly (alternative rules)
drc["poly_to_polycontact"] = 4*_lambda_
# ??
drc["active_enclosure_gate"] = 0.0
# 3.5 Minimum field poly to active
drc["poly_to_active"] = _lambda_
# 3.2.a Minimum spacing over field poly
drc["poly_to_field_poly"] = 3*_lambda_
# Not a rule
drc["minarea_poly"] = 0.0
# ??
drc["active_to_body_active"] = 4*_lambda_ # Fix me
# 2.1 Minimum width
drc["minwidth_active"] = 3*_lambda_
# 2.2 Minimum spacing
drc["active_to_active"] = 3*_lambda_
# 2.3 Source/drain active to well edge
drc["well_enclosure_active"] = 6*_lambda_
# Reserved for asymmetric enclosures
drc["well_extend_active"] = 6*_lambda_
# Not a rule
drc["minarea_active"] = 0.0
# 4.1 Minimum select spacing to channel of transistor to ensure adequate source/drain width
drc["implant_to_channel"] = 3*_lambda_
# 4.2 Minimum select overlap of active
drc["implant_enclosure_active"] = 2*_lambda_
# 4.3 Minimum select overlap of contact
drc["implant_enclosure_contact"] = _lambda_
# Not a rule
drc["implant_to_contact"] = 0
# Not a rule
drc["implant_to_implant"] = 0
# Not a rule
drc["minwidth_implant"] = 0
# 6.1 Exact contact size
drc["minwidth_contact"] = 2*_lambda_
# 5.3 Minimum contact spacing
drc["contact_to_contact"] = 3*_lambda_
# 6.2.b Minimum active overlap
drc["active_enclosure_contact"] = _lambda_
# Reserved for asymmetric enclosure
drc["active_extend_contact"] = _lambda_
# 5.2.b Minimum poly overlap
drc["poly_enclosure_contact"] = _lambda_
# Reserved for asymmetric enclosures
drc["poly_extend_contact"] = _lambda_
# Reserved for other technologies
drc["contact_to_gate"] = 2*_lambda_
# 5.4 Minimum spacing to gate of transistor
drc["contact_to_poly"] = 2*_lambda_
# 7.1 Minimum width
drc["minwidth_metal1"] = 3*_lambda_
# 7.2 Minimum spacing
drc["metal1_to_metal1"] = 3*_lambda_
# 7.3 Minimum overlap of any contact
drc["metal1_enclosure_contact"] = _lambda_
# Reserved for asymmetric enclosure
drc["metal1_extend_contact"] = _lambda_
# 8.3 Minimum overlap by metal1
drc["metal1_enclosure_via1"] = _lambda_
# Reserve for asymmetric enclosures
drc["metal1_extend_via1"] = _lambda_
# Not a rule
drc["minarea_metal1"] = 0
# 8.1 Exact size
drc["minwidth_via1"] = 2*_lambda_
# 8.2 Minimum via1 spacing
drc["via1_to_via1"] = 3*_lambda_
# 9.1 Minimum width
drc["minwidth_metal2"] = 3*_lambda_
# 9.2 Minimum spacing
drc["metal2_to_metal2"] = 3*_lambda_
# 9.3 Minimum overlap of via1
drc["metal2_extend_via1"] = _lambda_
# Reserved for asymmetric enclosures
drc["metal2_enclosure_via1"] = _lambda_
# 14.3 Minimum overlap by metal2
drc["metal2_extend_via2"] = _lambda_
# Reserved for asymmetric enclosures
drc["metal2_enclosure_via2"] = _lambda_
# Not a rule
drc["minarea_metal2"] = 0
# 14.1 Exact size
drc["minwidth_via2"] = 2*_lambda_
# 14.2 Minimum spacing
drc["via2_to_via2"] = 3*_lambda_
# 15.1 Minimum width
drc["minwidth_metal3"] = 3*_lambda_
# 15.2 Minimum spacing to metal3
drc["metal3_to_metal3"] = 3*_lambda_
# 15.3 Minimum overlap of via 2
drc["metal3_extend_via2"] = _lambda_
# Reserved for asymmetric enclosures
drc["metal3_enclosure_via2"] = _lambda_
# 21.3 Minimum overlap by metal3
drc["metal3_extend_via3"] = _lambda_
# Reserved for asymmetric enclosures
drc["metal3_enclosure_via3"] = _lambda_
# Not a rule
drc["minarea_metal3"] = 0
# 21.1 Exact size
drc["minwidth_via3"] = 2*_lambda_
# 21.2 Minimum spacing
drc["via3_to_via3"] = 3*_lambda_
# 22.1 Minimum width
drc["minwidth_metal4"] = 6*_lambda_
# 22.2 Minimum spacing to metal4
drc["metal4_to_metal4"] = 6*_lambda_
# 22.3 Minimum overlap of via 3
drc["metal4_extend_via3"] = 2*_lambda_
# Reserved for asymmetric enclosures
drc["metal4_enclosure_via3"] = 2*_lambda_
# Not a rule
drc["minarea_metal4"] = 0
###################################################
##END DRC/LVS Rules
###################################################
###################################################
##Spice Simulation Parameters
###################################################
# spice model info
spice={}
spice["nmos"]="n"
spice["pmos"]="p"
# This is a map of corners to model files
SPICE_MODEL_DIR=os.environ.get("SPICE_MODEL_DIR")
spice["fet_models"] = { "TT" : [SPICE_MODEL_DIR+"/nom/pmos.sp",SPICE_MODEL_DIR+"/nom/nmos.sp"],
"FF" : [SPICE_MODEL_DIR+"/ff/pmos.sp",SPICE_MODEL_DIR+"/ff/nmos.sp"],
"FS" : [SPICE_MODEL_DIR+"/ff/pmos.sp",SPICE_MODEL_DIR+"/ss/nmos.sp"],
"SF" : [SPICE_MODEL_DIR+"/ss/pmos.sp",SPICE_MODEL_DIR+"/ff/nmos.sp"],
"SS" : [SPICE_MODEL_DIR+"/ss/pmos.sp",SPICE_MODEL_DIR+"/ss/nmos.sp"],
"ST" : [SPICE_MODEL_DIR+"/ss/pmos.sp",SPICE_MODEL_DIR+"/nom/nmos.sp"],
"TS" : [SPICE_MODEL_DIR+"/nom/pmos.sp",SPICE_MODEL_DIR+"/ss/nmos.sp"],
"FT" : [SPICE_MODEL_DIR+"/ff/pmos.sp",SPICE_MODEL_DIR+"/nom/nmos.sp"],
"TF" : [SPICE_MODEL_DIR+"/nom/pmos.sp",SPICE_MODEL_DIR+"/ff/nmos.sp"],
}
#spice stimulus related variables
spice["feasible_period"] = 10 # estimated feasible period in ns
spice["supply_voltages"] = [4.5, 5.0, 5.5] # Supply voltage corners in [Volts]
spice["nom_supply_voltage"] = 5.0 # Nominal supply voltage in [Volts]
spice["rise_time"] = 0.05 # rise time in [Nano-seconds]
spice["fall_time"] = 0.05 # fall time in [Nano-seconds]
spice["temperatures"] = [0, 25, 100] # Temperature corners (celcius)
spice["nom_temperature"] = 25 # Nominal temperature (celcius)
# analytical delay parameters
spice["nom_threshold"] = 1.3 # Nominal Threshold voltage in Volts
# FIXME: These need to be updated for SCMOS, they are copied from FreePDK45.
spice["wire_unit_r"] = 0.075 # Unit wire resistance in ohms/square
spice["wire_unit_c"] = 0.64 # Unit wire capacitance ff/um^2
spice["min_tx_drain_c"] = 0.7 # Minimum transistor drain capacitance in ff
spice["min_tx_gate_c"] = 0.1 # Minimum transistor gate capacitance in ff
spice["dff_setup"] = 9 # DFF setup time in ps
spice["dff_hold"] = 1 # DFF hold time in ps
spice["dff_in_cap"] = 9.8242 # Input capacitance (D) [Femto-farad]
spice["dff_out_cap"] = 2 # Output capacitance (Q) [Femto-farad]
# analytical power parameters, many values are temporary
spice["bitcell_leakage"] = 1 # Leakage power of a single bitcell in nW
spice["inv_leakage"] = 1 # Leakage power of inverter in nW
spice["nand2_leakage"] = 1 # Leakage power of 2-input nand in nW
spice["nand3_leakage"] = 1 # Leakage power of 3-input nand in nW
spice["nor2_leakage"] = 1 # Leakage power of 2-input nor in nW
spice["dff_leakage"] = 1 # Leakage power of flop in nW
spice["default_event_frequency"] = 100 # Default event activity of every gate. MHz
#Logical Effort relative values for the Handmade cells
parameter["le_tau"] = 18.17 #In pico-seconds.
parameter["min_inv_para_delay"] = 2.07 #In relative delay units
parameter["cap_relative_per_ff"] = .91 #Units of Relative Capacitance/ Femto-Farad
parameter["dff_clk_cin"] = 27.5 #In relative capacitance units
parameter["6tcell_wl_cin"] = 2 #In relative capacitance units
parameter["sa_en_pmos_size"] = 24*_lambda_
parameter["sa_en_nmos_size"] = 9*_lambda_
parameter["sa_inv_pmos_size"] = 18*_lambda_
parameter["sa_inv_nmos_size"] = 9*_lambda_
parameter["bitcell_drain_cap"] = 0.2 #In Femto-Farad, approximation of drain capacitance
###################################################
##END Spice Simulation Parameters
###################################################