OpenRAM/compiler/pgates/pdriver.py

233 lines
8.9 KiB
Python

import debug
import pgate
import math
from tech import drc
from math import log
from vector import vector
from globals import OPTS
from pinv import pinv
class pdriver(pgate.pgate):
"""
This instantiates an even or odd number of inverters sized for driving a load.
"""
unique_id = 1
def __init__(self, neg_polarity=False, fanout_size=8, size_list = [], height=None, name=""):
self.stage_effort = 4
self.height = height
self.neg_polarity = neg_polarity
self.size_list = size_list
self.fanout_size = fanout_size
if len(self.size_list) > 0 and (self.fanout_size != 8 or self.neg_polarity):
debug.error("Cannot specify both size_list and neg_polarity or fanout_size.", -1)
if name=="":
name = "pdriver_{}".format(pdriver.unique_id)
pdriver.unique_id += 1
pgate.pgate.__init__(self, name, height)
debug.info(1, "Creating {}".format(self.name))
self.compute_sizes()
self.create_netlist()
if not OPTS.netlist_only:
self.create_layout()
def compute_sizes(self):
# size_list specified
if len(self.size_list) > 0:
if not len(self.size_list) % 2:
neg_polarity = True
self.num_inv = len(self.size_list)
else:
# find the number of stages
#fanout_size is a unit inverter fanout, not a capacitance so c_in=1
num_stages = max(1,int(round(log(self.fanout_size)/log(4))))
# find inv_num and compute sizes
if self.neg_polarity:
if (num_stages % 2 == 0): # if num_stages is even
self.diff_polarity(num_stages=num_stages)
else: # if num_stages is odd
self.same_polarity(num_stages=num_stages)
else: # positive polarity
if (num_stages % 2 == 0):
self.same_polarity(num_stages=num_stages)
else:
self.diff_polarity(num_stages=num_stages)
def same_polarity(self, num_stages):
self.calc_size_list = []
self.num_inv = num_stages
# compute sizes
fanout_size_prev = self.fanout_size
for x in range(self.num_inv-1,-1,-1):
fanout_size_prev = int(round(fanout_size_prev/self.stage_effort))
self.calc_size_list.append(fanout_size_prev)
def diff_polarity(self, num_stages):
self.calc_size_list = []
# find which delay is smaller
if (num_stages > 1):
delay_below = ((num_stages-1)*(self.fanout_size**(1/num_stages-1))) + num_stages-1
delay_above = ((num_stages+1)*(self.fanout_size**(1/num_stages+1))) + num_stages+1
if (delay_above < delay_below):
# recompute stage_effort for this delay
self.num_inv = num_stages+1
polarity_stage_effort = self.fanout_size**(1/self.num_inv)
else:
self.num_inv = num_stages-1
polarity_stage_effort = self.fanout_size**(1/self.num_inv)
else: # num_stages is 1, can't go to 0
self.num_inv = num_stages+1
polarity_stage_effort = self.fanout_size**(1/self.num_inv)
# compute sizes
fanout_size_prev = self.fanout_size
for x in range(self.num_inv-1,-1,-1):
fanout_size_prev = int(round(fanout_size_prev/polarity_stage_effort))
self.calc_size_list.append(fanout_size_prev)
def create_netlist(self):
inv_list = []
self.add_pins()
self.add_modules()
self.create_insts()
def create_layout(self):
self.width = self.num_inv * self.inv_list[0].width
self.height = self.inv_list[0].height
self.place_modules()
self.route_wires()
self.add_layout_pins()
self.DRC_LVS()
def add_pins(self):
self.add_pin("A")
self.add_pin("Z")
self.add_pin("vdd")
self.add_pin("gnd")
def add_modules(self):
self.inv_list = []
if len(self.size_list) > 0: # size list specified
for x in range(len(self.size_list)):
self.inv_list.append(pinv(size=self.size_list[x], height=self.height))
self.add_mod(self.inv_list[x])
else: # find inv sizes
for x in range(len(self.calc_size_list)):
self.inv_list.append(pinv(size=self.calc_size_list[x], height=self.height))
self.add_mod(self.inv_list[x])
def create_insts(self):
self.inv_inst_list = []
for x in range(1,self.num_inv+1):
# Create first inverter
if x == 1:
zbx_int = "Zb{}_int".format(x);
self.inv_inst_list.append(self.add_inst(name="buf_inv{}".format(x),
mod=self.inv_list[x-1]))
if self.num_inv == 1:
self.connect_inst(["A", "Z", "vdd", "gnd"])
else:
self.connect_inst(["A", zbx_int, "vdd", "gnd"])
# Create last inverter
elif x == self.num_inv:
zbn_int = "Zb{}_int".format(x-1);
self.inv_inst_list.append(self.add_inst(name="buf_inv{}".format(x),
mod=self.inv_list[x-1]))
self.connect_inst([zbn_int, "Z", "vdd", "gnd"])
# Create middle inverters
else:
zbx_int = "Zb{}_int".format(x-1);
zbn_int = "Zb{}_int".format(x);
self.inv_inst_list.append(self.add_inst(name="buf_inv{}".format(x),
mod=self.inv_list[x-1]))
self.connect_inst([zbx_int, zbn_int, "vdd", "gnd"])
def place_modules(self):
# Add INV1 to the left
self.inv_inst_list[0].place(vector(0,0))
# Add inverters to the right of INV1
for x in range(1,len(self.inv_inst_list)):
self.inv_inst_list[x].place(vector(self.inv_inst_list[x-1].rx(),0))
def route_wires(self):
z_inst_list = []
a_inst_list = []
# inv_current Z to inv_next A
for x in range(0,len(self.inv_inst_list)-1):
z_inst_list.append(self.inv_inst_list[x].get_pin("Z"))
a_inst_list.append(self.inv_inst_list[x+1].get_pin("A"))
mid_point = vector(z_inst_list[x].cx(), a_inst_list[x].cy())
self.add_path("metal1", [z_inst_list[x].center(), mid_point, a_inst_list[x].center()])
def add_layout_pins(self):
# Continous vdd rail along with label.
vdd_pin=self.inv_inst_list[0].get_pin("vdd")
self.add_layout_pin(text="vdd",
layer="metal1",
offset=vdd_pin.ll().scale(0,1),
width=self.width,
height=vdd_pin.height())
# Continous gnd rail along with label.
gnd_pin=self.inv_inst_list[0].get_pin("gnd")
self.add_layout_pin(text="gnd",
layer="metal1",
offset=gnd_pin.ll().scale(0,1),
width=self.width,
height=vdd_pin.height())
z_pin = self.inv_inst_list[len(self.inv_inst_list)-1].get_pin("Z")
self.add_layout_pin_rect_center(text="Z",
layer=z_pin.layer,
offset=z_pin.center(),
width = z_pin.width(),
height = z_pin.height())
a_pin = self.inv_inst_list[0].get_pin("A")
self.add_layout_pin_rect_center(text="A",
layer=a_pin.layer,
offset=a_pin.center(),
width = a_pin.width(),
height = a_pin.height())
def analytical_delay(self, slew, load=0.0):
"""Calculate the analytical delay of INV1 -> ... -> INVn"""
delay = 0;
if len(self.inv_inst_list) == 1:
delay = self.inv_inst_list[x].analytical_delay(slew=slew);
else:
for x in range(len(self.inv_inst_list-1)):
load_next = 0.0
for n in range(x,len(self.inv_inst_list+1)):
load_next += self.inv_inst_list[x+1]
if x == 1:
delay += self.inv_inst_list[x].analytical_delay(slew=slew,
load=load_next)
else:
delay += self.inv_inst_list[x+1].analytical_delay(slew=delay.slew,
load=load_next)
return delay