OpenRAM/compiler/bank.py

1228 lines
57 KiB
Python

import sys
from tech import drc, parameter
import debug
import design
import math
from math import log,sqrt,ceil
import contact
from pinv import pinv
from pnand2 import pnand2
from pnor2 import pnor2
from vector import vector
from globals import OPTS
class bank(design.design):
"""
Dynamically generated a single Bank including bitcell array,
hierarchical_decoder, precharge, column_mux, write driver and sense amplifiers.
"""
def __init__(self, word_size, num_words, words_per_row, num_banks=1, name=""):
mod_list = ["tri_gate", "bitcell", "decoder", "ms_flop_array", "wordline_driver",
"bitcell_array", "sense_amp_array", "precharge_array",
"column_mux_array", "write_driver_array", "tri_gate_array"]
for mod_name in mod_list:
config_mod_name = getattr(OPTS, mod_name)
class_file = reload(__import__(config_mod_name))
mod_class = getattr(class_file , config_mod_name)
setattr (self, "mod_"+mod_name, mod_class)
if name == "":
name = "bank_{0}_{1}".format(word_size, num_words)
design.design.__init__(self, name)
debug.info(2, "create sram of size {0} with {1} words".format(word_size,num_words))
self.word_size = word_size
self.num_words = num_words
self.words_per_row = words_per_row
self.num_banks = num_banks
# The local control signals are gated when we have bank select logic,
# so this prefix will be added to all of the input signals.
if self.num_banks>1:
self.prefix="gated_"
else:
self.prefix=""
self.compute_sizes()
self.add_pins()
self.create_modules()
self.add_modules()
self.setup_layout_constraints()
self.route_layout()
# Add and route the bank select logic
if(self.num_banks > 1):
self.add_bank_select()
# Can remove the following, but it helps for debug!
self.add_lvs_correspondence_points()
self.offset_all_coordinates()
self.DRC_LVS()
def add_pins(self):
""" Adding pins for Bank module"""
for i in range(self.word_size):
self.add_pin("DATA[{0}]".format(i))
for i in range(self.addr_size):
self.add_pin("ADDR[{0}]".format(i))
# For more than one bank, we have a bank select and name
# the signals gated_*.
if(self.num_banks > 1):
self.add_pin("bank_sel")
for pin in ["s_en","w_en","tri_en_bar","tri_en",
"clk_bar","clk_buf","vdd","gnd"]:
self.add_pin(pin)
def route_layout(self):
""" Create routing amoung the modules """
self.create_central_bus()
self.route_precharge_to_bitcell_array()
self.route_sense_amp_to_trigate()
self.route_tri_gate_out()
self.route_wordline_driver()
self.route_row_decoder()
self.route_column_address_lines()
self.route_msf_address()
self.route_control_lines()
self.add_control_pins()
self.route_vdd_supply()
self.route_gnd_supply()
def add_modules(self):
""" Add modules. The order should not matter! """
self.add_bitcell_array()
self.add_precharge_array()
if self.col_addr_size > 0:
self.add_column_mux_array()
self.column_mux_height = self.column_mux_array.height
else:
self.column_mux_height = 0
if self.col_addr_size > 1: # size 1 is from addr FF
self.add_column_decoder()
self.add_sense_amp_array()
self.add_write_driver_array()
self.add_msf_data_in()
self.add_tri_gate_array()
self.add_row_decoder()
self.add_wordline_driver()
self.add_msf_address()
def compute_sizes(self):
""" Computes the required sizes to create the bank """
self.num_cols = self.words_per_row*self.word_size
self.num_rows = self.num_words / self.words_per_row
self.row_addr_size = int(log(self.num_rows, 2))
self.col_addr_size = int(log(self.words_per_row, 2))
self.addr_size = self.col_addr_size + self.row_addr_size
debug.check(self.num_rows*self.num_cols==self.word_size*self.num_words,"Invalid bank sizes.")
debug.check(self.addr_size==self.col_addr_size + self.row_addr_size,"Invalid address break down.")
# Width for left gnd rail
self.vdd_rail_width = 5*self.m2_width
self.gnd_rail_width = 5*self.m2_width
# Number of control lines in the bus
self.num_control_lines = 6
# The order of the control signals on the control bus:
self.input_control_signals = ["clk_buf", "tri_en_bar", "tri_en", "clk_bar", "w_en", "s_en"]
# These will be outputs of the gaters if this is multibank
if self.num_banks>1:
self.control_signals = ["gated_"+str for str in self.input_control_signals]
else:
self.control_signals = self.input_control_signals
# The central bus is the column address (both polarities), row address
if self.col_addr_size>0:
self.num_addr_lines = 2**self.col_addr_size + self.row_addr_size
else:
self.num_addr_lines = self.row_addr_size
# M1/M2 routing pitch is based on contacted pitch
self.m1_pitch = contact.m1m2.height + max(self.m1_space,self.m2_space)
self.m2_pitch = contact.m2m3.height + max(self.m2_space,self.m3_space)
# Overall central bus gap. It includes all the column mux lines,
# control lines, address flop to decoder lines and a GND power rail in M2
# 1.5 pitches on the right on the right of the control lines for vias (e.g. column mux addr lines)
self.start_of_right_central_bus = -self.m2_pitch * (self.num_control_lines + 1.5)
# one pitch on the right on the addr lines and one on the right of the gnd rail
self.start_of_left_central_bus = self.start_of_right_central_bus - self.m2_pitch*(self.num_addr_lines+2) - self.gnd_rail_width
# add a pitch on each end and around the gnd rail
self.overall_central_bus_width = self.m2_pitch * (self.num_control_lines + self.num_addr_lines + 5) + self.gnd_rail_width
def create_modules(self):
""" Create all the modules using the class loader """
self.tri = self.mod_tri_gate()
self.bitcell = self.mod_bitcell()
self.bitcell_array = self.mod_bitcell_array(cols=self.num_cols,
rows=self.num_rows)
self.add_mod(self.bitcell_array)
self.precharge_array = self.mod_precharge_array(columns=self.num_cols)
self.add_mod(self.precharge_array)
if(self.col_addr_size > 0):
self.column_mux_array = self.mod_column_mux_array(columns=self.num_cols,
word_size=self.word_size)
self.add_mod(self.column_mux_array)
self.sense_amp_array = self.mod_sense_amp_array(word_size=self.word_size,
words_per_row=self.words_per_row)
self.add_mod(self.sense_amp_array)
self.write_driver_array = self.mod_write_driver_array(columns=self.num_cols,
word_size=self.word_size)
self.add_mod(self.write_driver_array)
self.decoder = self.mod_decoder(rows=self.num_rows)
self.add_mod(self.decoder)
self.msf_address = self.mod_ms_flop_array(name="msf_address",
columns=self.row_addr_size+self.col_addr_size,
word_size=self.row_addr_size+self.col_addr_size)
self.add_mod(self.msf_address)
self.msf_data_in = self.mod_ms_flop_array(name="msf_data_in",
columns=self.num_cols,
word_size=self.word_size)
self.add_mod(self.msf_data_in)
self.tri_gate_array = self.mod_tri_gate_array(columns=self.num_cols,
word_size=self.word_size)
self.add_mod(self.tri_gate_array)
self.wordline_driver = self.mod_wordline_driver(rows=self.num_rows)
self.add_mod(self.wordline_driver)
self.inv = pinv()
self.add_mod(self.inv)
def add_bitcell_array(self):
""" Adding Bitcell Array """
self.bitcell_array_inst=self.add_inst(name="bitcell_array",
mod=self.bitcell_array,
offset=vector(0,0))
temp = []
for i in range(self.num_cols):
temp.append("bl[{0}]".format(i))
temp.append("br[{0}]".format(i))
for j in range(self.num_rows):
temp.append("wl[{0}]".format(j))
temp.extend(["vdd", "gnd"])
self.connect_inst(temp)
def add_precharge_array(self):
""" Adding Precharge """
# The wells must be far enough apart
# The enclosure is for the well and the spacig is to the bitcell wells
y_offset = self.bitcell_array.height + 2*drc["pwell_to_nwell"] + drc["well_enclosure_active"]
self.precharge_array_inst=self.add_inst(name="precharge_array",
mod=self.precharge_array,
offset=vector(0,y_offset))
temp = []
for i in range(self.num_cols):
temp.append("bl[{0}]".format(i))
temp.append("br[{0}]".format(i))
temp.extend([self.prefix+"clk_bar", "vdd"])
self.connect_inst(temp)
def add_column_mux_array(self):
""" Adding Column Mux when words_per_row > 1 . """
y_offset = self.column_mux_array.height
self.col_mux_array_inst=self.add_inst(name="column_mux_array",
mod=self.column_mux_array,
offset=vector(0,y_offset).scale(-1,-1))
temp = []
for i in range(self.num_cols):
temp.append("bl[{0}]".format(i))
temp.append("br[{0}]".format(i))
for k in range(self.words_per_row):
temp.append("sel[{0}]".format(k))
for j in range(self.word_size):
temp.append("bl_out[{0}]".format(j))
temp.append("br_out[{0}]".format(j))
temp.append("gnd")
self.connect_inst(temp)
def add_sense_amp_array(self):
""" Adding Sense amp """
y_offset = self.column_mux_height + self.sense_amp_array.height
self.sense_amp_array_inst=self.add_inst(name="sense_amp_array",
mod=self.sense_amp_array,
offset=vector(0,y_offset).scale(-1,-1))
temp = []
for i in range(self.word_size):
temp.append("data_out[{0}]".format(i))
if self.words_per_row == 1:
temp.append("bl[{0}]".format(i))
temp.append("br[{0}]".format(i))
else:
temp.append("bl_out[{0}]".format(i))
temp.append("br_out[{0}]".format(i))
temp.extend([self.prefix+"s_en", "vdd", "gnd"])
self.connect_inst(temp)
def add_write_driver_array(self):
""" Adding Write Driver """
y_offset = self.sense_amp_array.height + self.column_mux_height + self.write_driver_array.height
self.write_driver_array_inst=self.add_inst(name="write_driver_array",
mod=self.write_driver_array,
offset=vector(0,y_offset).scale(-1,-1))
temp = []
for i in range(self.word_size):
temp.append("data_in[{0}]".format(i))
for i in range(self.word_size):
if (self.words_per_row == 1):
temp.append("bl[{0}]".format(i))
temp.append("br[{0}]".format(i))
else:
temp.append("bl_out[{0}]".format(i))
temp.append("br_out[{0}]".format(i))
temp.extend([self.prefix+"w_en", "vdd", "gnd"])
self.connect_inst(temp)
def add_msf_data_in(self):
""" data_in flip_flop """
y_offset= self.sense_amp_array.height + self.column_mux_height \
+ self.write_driver_array.height + self.msf_data_in.height
self.msf_data_in_inst=self.add_inst(name="data_in_flop_array",
mod=self.msf_data_in,
offset=vector(0,y_offset).scale(-1,-1))
temp = []
for i in range(self.word_size):
temp.append("DATA[{0}]".format(i))
for i in range(self.word_size):
temp.append("data_in[{0}]".format(i))
temp.append("data_in_bar[{0}]".format(i))
temp.extend([self.prefix+"clk_bar", "vdd", "gnd"])
self.connect_inst(temp)
def add_tri_gate_array(self):
""" data tri gate to drive the data bus """
y_offset = self.sense_amp_array.height+self.column_mux_height \
+ self.write_driver_array.height + self.msf_data_in.height
self.tri_gate_array_inst=self.add_inst(name="tri_gate_array",
mod=self.tri_gate_array,
offset=vector(0,y_offset).scale(-1,-1),
mirror="MX")
temp = []
for i in range(self.word_size):
temp.append("data_out[{0}]".format(i))
for i in range(self.word_size):
temp.append("DATA[{0}]".format(i))
temp.extend([self.prefix+"tri_en", self.prefix+"tri_en_bar", "vdd", "gnd"])
self.connect_inst(temp)
def add_row_decoder(self):
""" Add the hierarchical row decoder """
# The address and control bus will be in between decoder and the main memory array
# This bus will route address bits to the decoder input and column mux inputs.
# The wires are actually routed after we placed the stuff on both sides.
# The predecoder is below the x-axis and the main decoder is above the x-axis
# The address flop and decoder are aligned in the x coord.
decoder_x_offset = self.decoder.width + self.overall_central_bus_width
addr_x_offset = self.msf_address.height
offset = vector(max(decoder_x_offset, addr_x_offset),
self.decoder.predecoder_height)
self.row_decoder_inst=self.add_inst(name="row_decoder",
mod=self.decoder,
offset=offset.scale(-1,-1))
temp = []
for i in range(self.row_addr_size):
temp.append("A[{0}]".format(i))
for j in range(self.num_rows):
temp.append("dec_out[{0}]".format(j))
temp.extend(["vdd", "gnd"])
self.connect_inst(temp)
def add_wordline_driver(self):
""" Wordline Driver """
# The wordline driver is placed to the right of the main decoder width.
# This means that it slightly overlaps with the hierarchical decoder,
# but it shares power rails. This may differ for other decoders later...
x_offset = self.decoder.width + self.overall_central_bus_width - self.decoder.row_decoder_width
self.wordline_driver_inst=self.add_inst(name="wordline_driver",
mod=self.wordline_driver,
offset=vector(x_offset,0).scale(-1,-1))
temp = []
for i in range(self.num_rows):
temp.append("dec_out[{0}]".format(i))
for i in range(self.num_rows):
temp.append("wl[{0}]".format(i))
temp.append(self.prefix+"clk_buf")
temp.append("vdd")
temp.append("gnd")
self.connect_inst(temp)
def add_msf_address(self):
""" Adding address Flip-flops """
# A gap between the hierarchical decoder and addr flops
gap = max(drc["pwell_to_nwell"], 2*self.m2_pitch)
# The address flops go below the hierarchical decoder
decoder_x_offset = self.decoder.width + self.overall_central_bus_width
addr_x_offset = self.msf_address.height + self.overall_central_bus_width
# msf_address is not in the y-coord because it is rotated
offset = vector(max(decoder_x_offset, addr_x_offset),
self.decoder.predecoder_height + gap)
self.msf_address_inst=self.add_inst(name="address_flop_array",
mod=self.msf_address,
offset=offset.scale(-1,-1),
rotate=270)
temp = []
for i in range(self.row_addr_size+self.col_addr_size):
temp.append("ADDR[{0}]".format(i))
for i in range(self.row_addr_size+self.col_addr_size):
if self.col_addr_size==1 and i==self.row_addr_size:
temp.extend(["sel[1]","sel[0]"])
else:
temp.extend(["A[{0}]".format(i),"A_bar[{0}]".format(i)])
temp.append(self.prefix+"clk_buf")
temp.extend(["vdd", "gnd"])
self.connect_inst(temp)
def add_column_decoder(self):
""" Create a 2:4 decoder to decode column select lines if the col_addr_size = 4 """
if self.col_addr_size == 1:
return # This is done from the FF outputs directly
if self.col_addr_size == 2:
# FIXME: Should just load this rather than reference a level down
self.col_decoder = self.decoder.pre2_4
elif self.col_addr_size == 3:
debug.error("8 way column mux not yet supported...", -1)
# FIXME: Should just load this rather than reference a level down
self.col_decoder = self.decoder.pre3_8
else:
# No error checking before?
debug.error("Invalid column decoder?",-1)
# Place the col decoder just to the left of the control bus
x_off = self.m2_pitch + self.overall_central_bus_width + self.col_decoder.width
# Place the col decoder below the the address flops which are below the row decoder (lave some space for wells)
vertical_gap = max(drc["pwell_to_nwell"], 2*self.m2_pitch)
y_off = self.decoder.predecoder_height + self.msf_address.width + self.col_decoder.height + 2*vertical_gap
self.col_decoder_inst=self.add_inst(name="col_address_decoder",
mod=self.col_decoder,
offset=vector(x_off,y_off).scale(-1,-1))
temp = []
for i in range(self.col_addr_size):
temp.append("A[{0}]".format(i + self.row_addr_size))
for j in range(2**self.col_addr_size):
temp.append("sel[{0}]".format(j))
temp.extend(["vdd", "gnd"])
self.connect_inst(temp)
def add_bank_select(self):
"""Create a bank select signal that is combined with an array of
NOR+INV gates to gate the control signals in case of multiple
banks are created in upper level SRAM module
"""
# 4x Inverter
self.inv4x = pinv(4)
self.add_mod(self.inv4x)
self.nor2 = pnor2()
self.add_mod(self.nor2)
self.nand2 = pnand2()
self.add_mod(self.nand2)
# left of gnd rail is the "bus start"
bus_start = self.gnd_x_offset - self.m2_space
xoffset_nand = bus_start - self.nand2.width - self.inv4x.width - drc["pwell_to_nwell"]
xoffset_nor = bus_start - self.nor2.width - self.inv4x.width - drc["pwell_to_nwell"]
xoffset_inv = bus_start - self.inv4x.width
xoffset_bank_sel_inv = xoffset_nor - self.inv.width - 3*self.m2_pitch
xoffset_inputs = xoffset_bank_sel_inv - 6*self.m2_pitch
# bank select inverter
self.bank_select_inv_position = vector(xoffset_bank_sel_inv,
self.min_point)
# bank select inverter (must be made unique if more than one OR)
bank_sel_inv=self.add_inst(name="bank_sel_inv",
mod=self.inv,
offset=[xoffset_bank_sel_inv,self.min_point])
self.connect_inst(["bank_sel", "bank_sel_bar", "vdd", "gnd"])
# bank_sel is vertical wire
bank_sel_inv_pin = bank_sel_inv.get_pin("A")
xoffset_bank_sel = bank_sel_inv_pin.lx()
bank_sel_line_pos = vector(xoffset_bank_sel, self.min_point)
bank_sel_line_end = vector(xoffset_bank_sel, self.decoder_min_point-self.m2_pitch)
self.add_path("metal2", [bank_sel_line_pos,bank_sel_line_end])
self.add_via_center(layers=("metal1","via1","metal2"),
offset=bank_sel_inv_pin.lc())
# Route the pin to the left edge as well
bank_sel_pin_pos=vector(self.left_vdd_x_offset, self.min_point)
bank_sel_pin_end=vector(bank_sel_line_pos.x, bank_sel_pin_pos.y)
self.add_layout_pin_center_segment(text="bank_sel",
layer="metal3",
start=bank_sel_pin_pos,
end=bank_sel_pin_end)
self.add_via_center(layers=("metal2","via2","metal3"),
offset=bank_sel_pin_end,
rotate=90)
# bank_sel_bar is vertical wire
bank_sel_bar_pin = bank_sel_inv.get_pin("Z")
xoffset_bank_sel_bar = bank_sel_bar_pin.rx()
self.add_label_pin(text="bank_sel_bar",
layer="metal2",
offset=vector(xoffset_bank_sel_bar, self.min_point),
height=2*self.inv.height)
self.add_via_center(layers=("metal1","via1","metal2"),
offset=bank_sel_bar_pin.rc())
for i in range(self.num_control_lines):
input_name = self.input_control_signals[i]
gated_name = self.control_signals[i]
name_nand = "nand_{}".format(input_name)
name_nor = "nor_{}".format(input_name)
name_inv = "inv_{}".format(input_name)
y_offset = self.min_point + self.inv.height * i
if i%2:
y_offset += self.inv.height
mirror = "MX"
else:
mirror = ""
# These require OR (nor2+inv) gates since they are active low.
# (writes occur on clk low)
if input_name in ("clk_buf", "tri_en_bar"):
logic_inst=self.add_inst(name=name_nor,
mod=self.nor2,
offset=[xoffset_nor, y_offset],
mirror=mirror)
self.connect_inst([input_name,
"bank_sel_bar",
gated_name+"_temp_bar",
"vdd",
"gnd"])
xoffset_bank_signal = xoffset_bank_sel_bar
# the rest are AND (nand2+inv) gates
else:
logic_inst=self.add_inst(name=name_nand,
mod=self.nand2,
offset=[xoffset_nand, y_offset],
mirror=mirror)
bank_sel_signal = "bank_sel"
self.connect_inst([input_name,
"bank_sel",
gated_name+"_temp_bar",
"vdd",
"gnd"])
xoffset_bank_signal = xoffset_bank_sel
# They all get inverters on the output
inv_inst=self.add_inst(name=name_inv,
mod=self.inv4x,
offset=[xoffset_inv, y_offset],
mirror=mirror)
self.connect_inst([gated_name+"_temp_bar",
gated_name,
"vdd",
"gnd"])
# Connect the logic output to inverter input
pre = logic_inst.get_pin("Z").lc()
out_position = logic_inst.get_pin("Z").rc() + vector(0.5*self.m1_width,0)
in_position = inv_inst.get_pin("A").lc() + vector(0.5*self.m1_width,0)
post = inv_inst.get_pin("A").rc()
self.add_path("metal1", [pre, out_position, in_position, post])
# Connect the inverter output to the central bus
out_pos = inv_inst.get_pin("Z").rc()
bus_pos = vector(self.central_line_xoffset[gated_name], out_pos.y)
self.add_path("metal3",[out_pos, bus_pos])
self.add_via_center(layers=("metal2", "via2", "metal3"),
offset=bus_pos,
rotate=90)
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=out_pos,
rotate=90)
self.add_via_center(layers=("metal2", "via2", "metal3"),
offset=out_pos,
rotate=90)
# Connect the logic B input to bank_sel/bank_sel_bar
logic_pos = logic_inst.get_pin("B").lc() - vector(0.5*contact.m1m2.height,0)
input_pos = vector(xoffset_bank_signal,logic_pos.y)
self.add_path("metal2",[logic_pos, input_pos])
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=logic_pos,
rotate=90)
# Connect the logic A input to the input pin
logic_pos = logic_inst.get_pin("A").lc()
input_pos = vector(self.left_vdd_x_offset,logic_pos.y)
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=logic_pos,
rotate=90)
self.add_via_center(layers=("metal2", "via2", "metal3"),
offset=logic_pos,
rotate=90)
self.add_layout_pin_center_segment(text=input_name,
layer="metal3",
start=input_pos,
end=logic_pos)
# Add vdd/gnd supply rails
gnd_pos = inv_inst.get_pin("gnd").cy()
left_gnd_pos = vector(xoffset_bank_sel_inv, gnd_pos)
right_gnd_pos = vector(self.gnd_x_offset + 0.5*contact.m1m2.height, gnd_pos)
self.add_path("metal1",[left_gnd_pos, right_gnd_pos])
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=right_gnd_pos,
rotate=90)
vdd_pin = inv_inst.get_pin("vdd")
left_vdd_pos = vector(self.left_vdd_x_offset,vdd_pin.cy())
self.add_path("metal1",[left_vdd_pos,vdd_pin.rc()])
def setup_layout_constraints(self):
""" Calculating layout constraints, width, height etc """
#The minimum point is either the bottom of the address flops,
#the column decoder (if there is one) or the tristate output
#driver.
# Leave room for the output below the tri gate.
tri_gate_min_point = self.tri_gate_array_inst.ll().y - 3*self.m2_pitch
addr_min_point = self.msf_address_inst.ll().y - 2*self.m2_pitch
if self.col_addr_size >1:
self.decoder_min_point = self.col_decoder_inst.ll().y
else:
self.decoder_min_point = addr_min_point
if self.num_banks>1:
self.min_point = min(self.decoder_min_point - self.num_control_lines * self.bitcell.height, tri_gate_min_point)
else:
self.min_point = min(self.decoder_min_point, addr_min_point, tri_gate_min_point)
# The max point is always the top of the precharge bitlines
self.max_point = self.precharge_array_inst.uy()
self.height = self.max_point - self.min_point
# Add an extra gap between the bitcell and the rail
self.right_vdd_x_offset = self.bitcell_array_inst.ur().x + 3 * self.m1_width
offset = vector(self.right_vdd_x_offset, self.min_point)
self.add_layout_pin(text="vdd",
layer="metal1",
offset=offset,
width=self.vdd_rail_width,
height=self.height)
# from the edge of the decoder is another 2 times minwidth metal1
self.left_vdd_x_offset = min(self.msf_address_inst.ll().x, self.row_decoder_inst.ll().x) - self.vdd_rail_width - 2*self.m1_width
offset = vector(self.left_vdd_x_offset, self.min_point)
self.add_layout_pin(text="vdd",
layer="metal1",
offset=offset,
width=self.vdd_rail_width,
height=self.height)
self.gnd_x_offset = self.start_of_right_central_bus - self.gnd_rail_width - self.m2_pitch
offset = vector(self.gnd_x_offset, self.min_point)
self.add_layout_pin(text="gnd",
layer="metal2",
offset=offset,
width=self.gnd_rail_width,
height=self.height)
self.width = self.right_vdd_x_offset - self.left_vdd_x_offset + self.vdd_rail_width
def create_central_bus(self):
""" Create the address, supply, and control signal central bus lines. """
# Address lines in central line connection are 2*col_addr_size
# number of connections for the column mux (for both signal and _bar) and row_addr_size (no _bar)
self.central_line_xoffset = {}
# Control lines (to the right of the GND rail)
for i in range(self.num_control_lines):
x_offset = self.start_of_right_central_bus + i*self.m2_pitch
self.central_line_xoffset[self.control_signals[i]]=x_offset + 0.5*self.m2_width
# Pins are added later if this is a single bank, so just add rectangle now
self.add_rect(layer="metal2",
offset=vector(x_offset, self.min_point),
width=self.m2_width,
height=self.height)
# row address lines (to the left of the column mux or GND rail)
# goes from 0 down to the bottom of the address flops
for i in range(self.row_addr_size):
x_offset = self.start_of_left_central_bus + i*self.m2_pitch
name = "A[{}]".format(i)
self.central_line_xoffset[name]=x_offset + 0.5*self.m2_width
# Add a label pin for LVS correspondence and visual help inspecting the rail.
self.add_label_pin(text=name,
layer="metal2",
offset=vector(x_offset, self.decoder_min_point),
width=self.m2_width,
height=-self.decoder_min_point)
# column mux lines if there is column mux [2 or 4 lines] (to the left of the GND rail)
# goes from 0 down to the min point
if self.col_addr_size>0:
for i in range(2**self.col_addr_size):
x_offset = self.start_of_left_central_bus + (i+self.row_addr_size)*self.m2_pitch
name = "sel[{}]".format(i)
self.central_line_xoffset[name]=x_offset + 0.5*self.m2_width
# Add a label pin for LVS correspondence
self.add_label_pin(text=name,
layer="metal2",
offset=vector(x_offset, self.decoder_min_point),
width=self.m2_width,
height=-self.decoder_min_point)
def route_precharge_to_bitcell_array(self):
""" Routing of BL and BR between pre-charge and bitcell array """
for i in range(self.num_cols):
precharge_bl = self.precharge_array_inst.get_pin("bl[{}]".format(i)).bc()
precharge_br = self.precharge_array_inst.get_pin("br[{}]".format(i)).bc()
bitcell_bl = self.bitcell_array_inst.get_pin("bl[{}]".format(i)).uc()
bitcell_br = self.bitcell_array_inst.get_pin("br[{}]".format(i)).uc()
self.add_path("metal2",[precharge_bl,bitcell_bl])
self.add_path("metal2",[precharge_br,bitcell_br])
def route_sense_amp_to_trigate(self):
""" Routing of sense amp output to tri_gate input """
for i in range(self.word_size):
# Connection of data_out of sense amp to data_ in of msf_data_out
tri_gate_in = self.tri_gate_array_inst.get_pin("in[{}]".format(i)).bc()
sa_data_out = self.sense_amp_array_inst.get_pin("data[{}]".format(i)).bc()
# if we need a bend or not
if tri_gate_in.x-sa_data_out.x>self.m2_pitch:
# We'll connect to the bottom of the SA pin
bendX = sa_data_out.x
else:
# We'll connect to the left of the SA pin
sa_data_out = self.sense_amp_array_inst.get_pin("data[{}]".format(i)).lc()
bendX = tri_gate_in.x - 3*self.m3_width
bendY = tri_gate_in.y - 2*self.m2_width
# Connection point of M2 and M3 paths, below the tri gate and
# to the left of the tri gate input
bend = vector(bendX, bendY)
# Connect an M2 path to the gate
mid3 = [tri_gate_in.x, bendY] # guarantee down then left
self.add_path("metal2", [bend, mid3, tri_gate_in])
# connect up then right to sense amp
mid1 = vector(bendX,sa_data_out.y)
self.add_path("metal3", [bend, mid1, sa_data_out])
offset = bend - vector([0.5*drc["minwidth_metal3"]] * 2)
self.add_via(("metal2", "via2", "metal3"),offset)
def route_tri_gate_out(self):
""" Metal 3 routing of tri_gate output data """
for i in range(self.word_size):
tri_gate_out_position = self.tri_gate_array_inst.get_pin("out[{}]".format(i)).ul()
data_line_position = vector(tri_gate_out_position.x, self.min_point)
self.add_via(("metal2", "via2", "metal3"), data_line_position)
self.add_rect(layer="metal3",
offset=data_line_position,
width=drc["minwidth_metal3"],
height=tri_gate_out_position.y - self.min_point)
self.add_layout_pin(text="DATA[{}]".format(i),
layer="metal2",
offset=data_line_position,
height=2*self.m2_width)
def route_row_decoder(self):
""" Routes the row decoder inputs and supplies """
for i in range(self.row_addr_size):
# before this index, we are using 2x4 decoders
switchover_index = 2*self.decoder.no_of_pre2x4
# so decide what modulus to perform the height spacing
if i < switchover_index:
position_heights = i % 2
else:
position_heights = (i-switchover_index) % 3
# Connect the address rails to the decoder
# Note that the decoder inputs are long vertical rails so spread out the connections vertically.
decoder_in_position = self.row_decoder_inst.get_pin("A[{}]".format(i)).lr() + vector(0,position_heights*self.bitcell.height+self.m2_pitch)
rail_position = vector(self.central_line_xoffset["A[{}]".format(i)],decoder_in_position.y)
self.add_path("metal1",[decoder_in_position,rail_position])
decoder_in_via = decoder_in_position - vector(0,0.5*self.m2_width)
self.add_via(layers=("metal1", "via1", "metal2"),
offset=decoder_in_via,
rotate=90)
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=rail_position,
rotate=90)
# Route the power and ground, but only BELOW the y=0 since the
# others are connected with the wordline driver.
# These must be on M3 to not interfere with column mux address pins.
for gnd_pin in self.row_decoder_inst.get_pins("gnd"):
if gnd_pin.uy()>0:
continue
decoder_gnd_position = gnd_pin.rc()
via_position = decoder_gnd_position + vector(0.5*contact.m1m2.height+self.m2_space,0)
gnd_rail_position = vector(self.gnd_x_offset, decoder_gnd_position.y)
self.add_path("metal1", [decoder_gnd_position, via_position])
self.add_path("metal3", [via_position, gnd_rail_position])
self.add_via_center(layers=("metal1","via1","metal2"),
offset=via_position,
rotate=90)
self.add_via_center(layers=("metal2","via2","metal3"),
offset=via_position,
rotate=90)
self.add_via_center(layers=("metal2","via2","metal3"),
offset=gnd_rail_position,
rotate=270)
# route the vdd rails
for vdd_pin in self.row_decoder_inst.get_pins("vdd"):
if vdd_pin.uy()>0:
continue
y_offset = vdd_pin.rc().y
left_rail_position = vector(self.left_vdd_x_offset, y_offset)
right_rail_position = vector(self.row_decoder_inst.ur().x, y_offset)
self.add_path("metal1", [left_rail_position, right_rail_position])
def route_wordline_driver(self):
""" Connecting Wordline driver output to Bitcell WL connection """
# we don't care about bends after connecting to the input pin, so let the path code decide.
for i in range(self.num_rows):
# The pre/post is to access the pin from "outside" the cell to avoid DRCs
decoder_out_pos = self.row_decoder_inst.get_pin("decode[{}]".format(i)).rc()
driver_in_pos = self.wordline_driver_inst.get_pin("in[{}]".format(i)).lc()
mid1 = decoder_out_pos.scale(0.5,1)+driver_in_pos.scale(0.5,0)
mid2 = decoder_out_pos.scale(0.5,0)+driver_in_pos.scale(0.5,1)
self.add_path("metal1", [decoder_out_pos, mid1, mid2, driver_in_pos])
# The mid guarantees we exit the input cell to the right.
driver_wl_pos = self.wordline_driver_inst.get_pin("wl[{}]".format(i)).rc()
bitcell_wl_pos = self.bitcell_array_inst.get_pin("wl[{}]".format(i)).lc()
mid1 = driver_wl_pos.scale(0.5,1)+bitcell_wl_pos.scale(0.5,0)
mid2 = driver_wl_pos.scale(0.5,0)+bitcell_wl_pos.scale(0.5,1)
self.add_path("metal1", [driver_wl_pos, mid1, mid2, bitcell_wl_pos])
# route the gnd rails, add contact to rail as well
for gnd_pin in self.wordline_driver_inst.get_pins("gnd"):
driver_gnd_pos = gnd_pin.rc()
right_rail_pos = vector(self.bitcell_array_inst.ll().x, driver_gnd_pos.y)
self.add_path("metal1", [driver_gnd_pos, right_rail_pos])
gnd_rail_pos = vector(self.gnd_x_offset, driver_gnd_pos.y + 0.5*contact.m1m2.width)
self.add_via(layers=("metal1","via1","metal2"),
offset=gnd_rail_pos,
rotate=270)
# route the vdd rails
for vdd_pin in self.wordline_driver_inst.get_pins("vdd"):
y_offset = vdd_pin.rc().y
left_rail_pos = vector(self.left_vdd_x_offset, y_offset)
right_rail_pos = vector(self.right_vdd_x_offset+self.vdd_rail_width, y_offset)
self.add_path("metal1", [left_rail_pos, right_rail_pos])
def route_column_address_lines(self):
""" Connecting the select lines of column mux to the address bus """
if not self.col_addr_size>0:
return
# Connect the select lines to the column mux
# These must be in metal3 so that they don't overlap any gnd lines from decoders
for i in range(2**self.col_addr_size):
name = "sel[{}]".format(i)
mux_addr_pos = self.col_mux_array_inst.get_pin(name).lc()
wire_pos = vector(self.central_line_xoffset[name], mux_addr_pos.y)
self.add_path("metal1", [wire_pos,mux_addr_pos])
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=wire_pos,
rotate=90)
# Take care of the column address decoder routing
# If there is a 2:4 decoder for column select lines
# or TODO 3:8 decoder should work too!
if self.col_addr_size > 1:
# connections between outputs of decoder to the extension of
# main address bus
for i in range(2**self.col_addr_size):
name = "sel[{}]".format(i)
x_offset = self.central_line_xoffset[name]
decode_out_pos = self.col_decoder_inst.get_pin("out[{}]".format(i)).rc()
selx_pos = vector(self.central_line_xoffset[name],decode_out_pos.y)
self.add_path("metal1",[decode_out_pos, selx_pos])
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=selx_pos,
rotate=90)
# route the gnd rails, add contact to rail as well
for gnd_pin in self.col_decoder_inst.get_pins("gnd"):
driver_gnd_pos = gnd_pin.rc()
right_rail_pos = vector(self.gnd_x_offset, driver_gnd_pos.y)
self.add_path("metal1", [driver_gnd_pos, right_rail_pos])
gnd_rail_pos = vector(self.gnd_x_offset, driver_gnd_pos.y + 0.5*contact.m1m2.width)
self.add_via(layers=("metal1","via1","metal2"),
offset=gnd_rail_pos,
rotate=270)
# route the vdd rails
for vdd_pin in self.col_decoder_inst.get_pins("vdd"):
y_offset = vdd_pin.rc().y
left_rail_pos = vector(self.left_vdd_x_offset, y_offset)
right_rail_pos = vector(self.gnd_x_offset, y_offset)
self.add_path("metal1", [left_rail_pos, right_rail_pos])
# The connection between last address flops to the input
# of the column_mux line decoder
for i in range(self.col_addr_size):
ff_index = i + self.row_addr_size
dout_pos = self.msf_address_inst.get_pin("dout[{}]".format(ff_index)).rc()
in_pos = self.col_decoder_inst.get_pin("in[{}]".format(i)).uc()
mid_pos = vector(in_pos.x,dout_pos.y)
self.add_path("metal3",[dout_pos, mid_pos, in_pos])
self.add_via_center(layers=("metal2", "via2", "metal3"),
offset=dout_pos,
rotate=90)
self.add_via_center(layers=("metal2", "via2", "metal3"),
offset=in_pos)
# if there are only two column select lines we just connect the dout_bar of the last FF
# to only select line and dout of that FF to the other select line
elif self.col_addr_size == 1:
dout_bar_pos = self.msf_address_inst.get_pin("dout_bar[{}]".format(self.row_addr_size)).rc()
sel0_pos = vector(self.central_line_xoffset["sel[0]"],dout_bar_pos.y)
self.add_path("metal1",[dout_bar_pos, sel0_pos])
# two vias on both ends
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=dout_bar_pos,
rotate=90)
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=sel0_pos,
rotate=90)
dout_pos = self.msf_address_inst.get_pin("dout[{}]".format(self.row_addr_size)).rc()
sel1_pos = vector(self.central_line_xoffset["sel[1]"],dout_pos.y)
self.add_path("metal1",[dout_pos, sel1_pos])
# two vias on both ends
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=dout_pos,
rotate=90)
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=sel1_pos,
rotate=90)
def route_msf_address(self):
""" Routing the row address lines from the address ms-flop array to the row-decoder """
# Create the address input pins
for i in range(self.addr_size):
msf_din_pins = self.msf_address_inst.get_pins("din[{}]".format(i))
for pin in msf_din_pins:
if pin.layer=="metal3":
msf_din_pos=pin.ll()
break
address_pos = vector(self.left_vdd_x_offset, msf_din_pos.y)
self.add_layout_pin(text="ADDR[{}]".format(i),
layer="metal3",
offset=address_pos,
width=msf_din_pos.x - self.left_vdd_x_offset)
for i in range(self.row_addr_size):
# Connect the ff outputs to the rails
dout_pos = self.msf_address_inst.get_pin("dout[{}]".format(i)).rc()
rail_pos = vector(self.central_line_xoffset["A[{}]".format(i)],dout_pos.y)
self.add_path("metal1",[dout_pos, rail_pos])
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=dout_pos,
rotate=90)
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=rail_pos,
rotate=90)
# Connect address FF gnd
for gnd_pin in self.msf_address_inst.get_pins("gnd"):
if gnd_pin.layer != "metal2":
continue
gnd_via = gnd_pin.lr() + vector(contact.m1m2.height,0)
self.add_via(layers=("metal1", "via1", "metal2"),
offset=gnd_via,
rotate=90)
gnd_offset = gnd_pin.rc()
rail_offset = vector(self.gnd_x_offset+contact.m1m2.height,gnd_offset.y)
self.add_path("metal1",[gnd_offset,rail_offset])
rail_via = rail_offset - vector(0,0.5*self.m2_width)
self.add_via(layers=("metal1", "via1", "metal2"),
offset=rail_via,
rotate=90)
# Connect address FF vdd
for vdd_pin in self.msf_address_inst.get_pins("vdd"):
if vdd_pin.layer != "metal1":
continue
vdd_offset = vdd_pin.bc()
mid = vector(vdd_offset.x, vdd_offset.y - self.m1_pitch)
rail_offset = vector(self.left_vdd_x_offset, mid.y)
self.add_path("metal1", [vdd_offset,mid,rail_offset])
def add_lvs_correspondence_points(self):
""" This adds some points for easier debugging if LVS goes wrong.
These should probably be turned off by default though, since extraction
will show these as ports in the extracted netlist.
"""
# Add the wordline names
for i in range(self.num_rows):
wl_name = "wl[{}]".format(i)
wl_pin = self.bitcell_array_inst.get_pin(wl_name)
self.add_label(text=wl_name,
layer="metal1",
offset=wl_pin.ll())
# Add the bitline names
for i in range(self.num_cols):
bl_name = "bl[{}]".format(i)
br_name = "br[{}]".format(i)
bl_pin = self.bitcell_array_inst.get_pin(bl_name)
br_pin = self.bitcell_array_inst.get_pin(br_name)
self.add_label(text=bl_name,
layer="metal2",
offset=bl_pin.ll())
self.add_label(text=br_name,
layer="metal2",
offset=br_pin.ll())
# Add the data input names to the data flop output
for i in range(self.word_size):
dout_name = "dout[{}]".format(i)
dout_pin = self.msf_data_in_inst.get_pin(dout_name)
self.add_label(text="data_in[{}]".format(i),
layer="metal2",
offset=dout_pin.ll())
# Add the data output names to the sense amp output
for i in range(self.word_size):
data_name = "data[{}]".format(i)
data_pin = self.sense_amp_array_inst.get_pin(data_name)
self.add_label(text="data_out[{}]".format(i),
layer="metal3",
offset=data_pin.ll())
def route_control_lines(self):
""" Route the control lines of the entire bank """
# Make a list of tuples that we will connect.
# From control signal to the module pin
# Connection from the central bus to the main control block crosses
# pre-decoder and this connection is in metal3
connection = []
connection.append((self.prefix+"clk_bar", self.msf_data_in_inst.get_pin("clk").lc()))
connection.append((self.prefix+"tri_en_bar", self.tri_gate_array_inst.get_pin("en_bar").lc()))
connection.append((self.prefix+"tri_en", self.tri_gate_array_inst.get_pin("en").lc()))
connection.append((self.prefix+"clk_bar", self.precharge_array_inst.get_pin("en").lc()))
connection.append((self.prefix+"w_en", self.write_driver_array_inst.get_pin("en").lc()))
connection.append((self.prefix+"s_en", self.sense_amp_array_inst.get_pin("en").lc()))
for (control_signal, pin_pos) in connection:
control_pos = vector(self.central_line_xoffset[control_signal], pin_pos.y)
self.add_path("metal1", [control_pos, pin_pos])
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=control_pos,
rotate=90)
# clk to msf address
control_signal = self.prefix+"clk_buf"
pin_pos = self.msf_address_inst.get_pin("clk").uc()
mid_pos = pin_pos + vector(0,self.m1_pitch)
control_pos = vector(self.central_line_xoffset[control_signal], mid_pos.y)
self.add_path("metal1",[pin_pos, mid_pos, control_pos])
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=control_pos,
rotate=90)
# clk to wordline_driver
control_signal = self.prefix+"clk_buf"
pin_pos = self.wordline_driver_inst.get_pin("en").uc()
mid_pos = pin_pos + vector(0,self.m1_pitch)
control_x_offset = self.central_line_xoffset[control_signal]
control_pos = vector(control_x_offset + self.m1_width, mid_pos.y)
self.add_wire(("metal1","via1","metal2"),[pin_pos, mid_pos, control_pos])
control_via_pos = vector(control_x_offset, mid_pos.y)
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=control_via_pos,
rotate=90)
def route_vdd_supply(self):
""" Route vdd for the precharge, sense amp, write_driver, data FF, tristate """
for inst in [self.precharge_array_inst, self.sense_amp_array_inst,
self.write_driver_array_inst, self.msf_data_in_inst,
self.tri_gate_array_inst]:
for vdd_pin in inst.get_pins("vdd"):
self.add_rect(layer="metal1",
offset=vdd_pin.ll(),
width=self.right_vdd_x_offset - vdd_pin.lx(),
height=self.m1_width)
def route_gnd_supply(self):
""" Route gnd for the precharge, sense amp, write_driver, data FF, tristate """
# precharge is connected by abutment
for inst in [ self.tri_gate_array_inst, self.sense_amp_array_inst, self.msf_data_in_inst, self.write_driver_array_inst]:
for gnd_pin in inst.get_pins("gnd"):
if gnd_pin.layer != "metal1":
continue
# route to the right hand side of the big rail to reduce via overlaps
pin_pos = gnd_pin.lc()
gnd_offset = vector(self.gnd_x_offset+self.gnd_rail_width, pin_pos.y)
self.add_path("metal1", [gnd_offset, pin_pos])
contact_offset = gnd_offset - vector(0,0.5*self.m2_width)
self.add_via(layers=("metal1", "via1", "metal2"),
offset=contact_offset,
rotate=90)
def add_control_pins(self):
""" Add the control signal input pins """
for ctrl in self.control_signals:
x_offset = self.central_line_xoffset[ctrl]
if self.num_banks > 1:
# it's not an input pin if we have multiple banks
self.add_label_pin(text=ctrl,
layer="metal2",
offset=vector(x_offset - 0.5*self.m2_width, self.min_point),
width=self.m2_width,
height=self.height)
else:
self.add_layout_pin(text=ctrl,
layer="metal2",
offset=vector(x_offset - 0.5*self.m2_width, self.min_point),
width=self.m2_width,
height=self.height)
def connect_rail_from_right(self,inst, pin, rail):
""" Helper routine to connect an unrotated/mirrored oriented instance to the rails """
in_pin = inst.get_pin(pin).lc()
rail_pos = vector(self.rail_1_x_offsets[rail], in_pin.y)
self.add_wire(("metal3","via2","metal2"),[in_pin, rail_pos, rail_pos - vector(0,self.m2_pitch)])
# Bring it up to M2 for M2/M3 routing
self.add_via(layers=("metal1","via1","metal2"),
offset=in_pin + contact.m1m2.offset,
rotate=90)
self.add_via(layers=("metal2","via2","metal3"),
offset=in_pin + self.m2m3_via_offset,
rotate=90)
def connect_rail_from_left(self,inst, pin, rail):
""" Helper routine to connect an unrotated/mirrored oriented instance to the rails """
in_pin = inst.get_pin(pin).rc()
rail_pos = vector(self.rail_1_x_offsets[rail], in_pin.y)
self.add_wire(("metal3","via2","metal2"),[in_pin, rail_pos, rail_pos - vector(0,self.m2_pitch)])
self.add_via(layers=("metal1","via1","metal2"),
offset=in_pin + contact.m1m2.offset,
rotate=90)
self.add_via(layers=("metal2","via2","metal3"),
offset=in_pin + self.m2m3_via_offset,
rotate=90)
def analytical_delay(self, slew, load):
""" return analytical delay of the bank"""
msf_addr_delay = self.msf_address.analytical_delay(slew, self.decoder.input_load())
decoder_delay = self.decoder.analytical_delay(msf_addr_delay.slew, self.wordline_driver.input_load())
word_driver_delay = self.wordline_driver.analytical_delay(decoder_delay.slew, self.bitcell_array.input_load())
bitcell_array_delay = self.bitcell_array.analytical_delay(word_driver_delay.slew)
bl_t_data_out_delay = self.sense_amp_array.analytical_delay(bitcell_array_delay.slew,
self.bitcell_array.output_load())
# output load of bitcell_array is set to be only small part of bl for sense amp.
data_t_DATA_delay = self.tri_gate_array.analytical_delay(bl_t_data_out_delay.slew, load)
result = msf_addr_delay + decoder_delay + word_driver_delay \
+ bitcell_array_delay + bl_t_data_out_delay + data_t_DATA_delay
return result