OpenRAM/compiler/pgates/pnand3.py

351 lines
15 KiB
Python

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import pgate
import debug
from tech import drc, parameter, spice
from vector import vector
import logical_effort
from sram_factory import factory
from globals import OPTS
import contact
class pnand3(pgate.pgate):
"""
This module generates gds of a parametrically sized 2-input nand.
This model use ptx to generate a 2-input nand within a cetrain height.
"""
def __init__(self, name, size=1, height=None, add_wells=True):
""" Creates a cell for a simple 3 input nand """
debug.info(2,
"creating pnand3 structure {0} with size of {1}".format(name,
size))
self.add_comment("size: {}".format(size))
# We have trouble pitch matching a 3x sizes to the bitcell...
# If we relax this, we could size this better.
self.size = size
self.nmos_size = 2 * size
self.pmos_size = parameter["beta"] * size
self.nmos_width = self.nmos_size * drc("minwidth_tx")
self.pmos_width = self.pmos_size * drc("minwidth_tx")
# FIXME: Allow these to be sized
debug.check(size == 1,
"Size 1 pnand3 is only supported now.")
self.tx_mults = 1
if OPTS.tech_name == "sky130":
self.nmos_width = self.nearest_bin("nmos", self.nmos_width)
self.pmos_width = self.nearest_bin("pmos", self.pmos_width)
# Creates the netlist and layout
pgate.pgate.__init__(self, name, height, add_wells)
def add_pins(self):
""" Adds pins for spice netlist """
pin_list = ["A", "B", "C", "Z", "vdd", "gnd"]
dir_list = ["INPUT", "INPUT", "INPUT", "OUTPUT", "POWER", "GROUND"]
self.add_pin_list(pin_list, dir_list)
def create_netlist(self):
self.add_pins()
self.add_ptx()
self.create_ptx()
def create_layout(self):
""" Calls all functions related to the generation of the layout """
self.setup_layout_constants()
self.place_ptx()
if self.add_wells:
self.add_well_contacts()
self.route_inputs()
self.route_output()
self.determine_width()
self.route_supply_rails()
self.connect_rails()
self.extend_wells()
self.add_boundary()
def add_ptx(self):
""" Create the PMOS and NMOS transistors. """
self.nmos_center = factory.create(module_type="ptx",
width=self.nmos_width,
mults=self.tx_mults,
tx_type="nmos",
add_source_contact="active",
add_drain_contact="active")
self.add_mod(self.nmos_center)
self.nmos_right = factory.create(module_type="ptx",
width=self.nmos_width,
mults=self.tx_mults,
tx_type="nmos",
add_source_contact="active",
add_drain_contact=self.route_layer)
self.add_mod(self.nmos_right)
self.nmos_left = factory.create(module_type="ptx",
width=self.nmos_width,
mults=self.tx_mults,
tx_type="nmos",
add_source_contact=self.route_layer,
add_drain_contact="active")
self.add_mod(self.nmos_left)
self.pmos_left = factory.create(module_type="ptx",
width=self.pmos_width,
mults=self.tx_mults,
tx_type="pmos",
add_source_contact=self.route_layer,
add_drain_contact=self.route_layer)
self.add_mod(self.pmos_left)
self.pmos_center = factory.create(module_type="ptx",
width=self.pmos_width,
mults=self.tx_mults,
tx_type="pmos",
add_source_contact=self.route_layer,
add_drain_contact=self.route_layer)
self.add_mod(self.pmos_center)
self.pmos_right = factory.create(module_type="ptx",
width=self.pmos_width,
mults=self.tx_mults,
tx_type="pmos",
add_source_contact=self.route_layer,
add_drain_contact=self.route_layer)
self.add_mod(self.pmos_right)
def setup_layout_constants(self):
""" Pre-compute some handy layout parameters. """
# Compute the overlap of the source and drain pins
self.ptx_offset = self.pmos_left.get_pin("D").center() - self.pmos_left.get_pin("S").center()
# This is the extra space needed to ensure DRC rules
# to the active contacts
nmos = factory.create(module_type="ptx", tx_type="nmos")
extra_contact_space = max(-nmos.get_pin("D").by(), 0)
def create_ptx(self):
"""
Create the PMOS and NMOS in the netlist.
"""
self.pmos1_inst = self.add_inst(name="pnand3_pmos1",
mod=self.pmos_left)
self.connect_inst(["vdd", "A", "Z", "vdd"])
self.pmos2_inst = self.add_inst(name="pnand3_pmos2",
mod=self.pmos_center)
self.connect_inst(["Z", "B", "vdd", "vdd"])
self.pmos3_inst = self.add_inst(name="pnand3_pmos3",
mod=self.pmos_right)
self.connect_inst(["Z", "C", "vdd", "vdd"])
self.nmos1_inst = self.add_inst(name="pnand3_nmos1",
mod=self.nmos_left)
self.connect_inst(["Z", "C", "net1", "gnd"])
self.nmos2_inst = self.add_inst(name="pnand3_nmos2",
mod=self.nmos_center)
self.connect_inst(["net1", "B", "net2", "gnd"])
self.nmos3_inst = self.add_inst(name="pnand3_nmos3",
mod=self.nmos_right)
self.connect_inst(["net2", "A", "gnd", "gnd"])
def place_ptx(self):
"""
Place the PMOS and NMOS in the layout at the upper-most
and lowest position to provide maximum routing in channel
"""
pmos1_pos = vector(self.pmos_left.active_offset.x,
self.height - self.pmos_left.active_height - self.top_bottom_space)
self.pmos1_inst.place(pmos1_pos)
pmos2_pos = pmos1_pos + self.ptx_offset
self.pmos2_inst.place(pmos2_pos)
self.pmos3_pos = pmos2_pos + self.ptx_offset
self.pmos3_inst.place(self.pmos3_pos)
nmos1_pos = vector(self.pmos_left.active_offset.x,
self.top_bottom_space)
self.nmos1_inst.place(nmos1_pos)
nmos2_pos = nmos1_pos + self.ptx_offset
self.nmos2_inst.place(nmos2_pos)
self.nmos3_pos = nmos2_pos + self.ptx_offset
self.nmos3_inst.place(self.nmos3_pos)
def add_well_contacts(self):
""" Add n/p well taps to the layout and connect to supplies """
self.add_nwell_contact(self.pmos_right,
self.pmos3_pos + vector(self.m1_pitch, 0))
self.add_pwell_contact(self.nmos_right,
self.nmos3_pos + vector(self.m1_pitch, 0))
def connect_rails(self):
""" Connect the nmos and pmos to its respective power rails """
self.connect_pin_to_rail(self.nmos1_inst, "S", "gnd")
self.connect_pin_to_rail(self.pmos1_inst, "S", "vdd")
self.connect_pin_to_rail(self.pmos2_inst, "D", "vdd")
def route_inputs(self):
""" Route the A and B and C inputs """
# We can use this pitch because the contacts and overlap won't be adjacent
non_contact_pitch = 0.5 * self.m1_width + self.m1_space + 0.5 * contact.poly_contact.second_layer_height
pmos_drain_bottom = self.pmos1_inst.get_pin("D").by()
self.output_yoffset = pmos_drain_bottom - 0.5 * self.route_layer_width - self.route_layer_space
bottom_pin = self.nmos1_inst.get_pin("D")
# active contact metal to poly contact metal spacing
active_contact_to_poly_contact = bottom_pin.uy() + self.m1_space + 0.5 * contact.poly_contact.second_layer_height
# active diffusion to poly contact spacing
# doesn't use nmos uy because that is calculated using offset + poly height
active_top = self.nmos1_inst.by() + self.nmos1_inst.mod.active_height
active_to_poly_contact = active_top + self.poly_to_active + 0.5 * contact.poly_contact.first_layer_height
active_to_poly_contact2 = active_top + self.poly_contact_to_gate + 0.5 * self.route_layer_width
self.inputA_yoffset = max(active_contact_to_poly_contact,
active_to_poly_contact,
active_to_poly_contact2)
apin = self.route_input_gate(self.pmos1_inst,
self.nmos1_inst,
self.inputA_yoffset,
"A",
position="left")
self.inputB_yoffset = self.inputA_yoffset + self.m3_pitch
bpin = self.route_input_gate(self.pmos2_inst,
self.nmos2_inst,
self.inputB_yoffset,
"B",
position="center")
self.inputC_yoffset = self.inputB_yoffset + self.m3_pitch
cpin = self.route_input_gate(self.pmos3_inst,
self.nmos3_inst,
self.inputC_yoffset,
"C",
position="right")
if OPTS.tech_name == "sky130":
self.add_enclosure([apin, bpin, cpin], "npc", drc("npc_enclose_poly"))
def route_output(self):
""" Route the Z output """
# PMOS1 drain
pmos1_pin = self.pmos1_inst.get_pin("D")
# PMOS3 drain
pmos3_pin = self.pmos3_inst.get_pin("D")
# NMOS3 drain
nmos3_pin = self.nmos3_inst.get_pin("D")
out_offset = vector(nmos3_pin.cx() + self.route_layer_pitch,
self.output_yoffset)
# Go up to metal2 for ease on all output pins
# self.add_via_center(layers=self.m1_stack,
# offset=pmos1_pin.center(),
# directions=("V", "V"))
# self.add_via_center(layers=self.m1_stack,
# offset=pmos3_pin.center(),
# directions=("V", "V"))
# self.add_via_center(layers=self.m1_stack,
# offset=nmos3_pin.center(),
# directions=("V", "V"))
# # Route in the A input track (top track)
# mid_offset = vector(nmos3_pin.center().x, self.inputA_yoffset)
# self.add_path("m1", [pmos1_pin.center(), mid_offset, nmos3_pin.uc()])
# This extends the output to the edge of the cell
# self.add_via_center(layers=self.m1_stack,
# offset=mid_offset)
top_left_pin_offset = pmos1_pin.center()
top_right_pin_offset = pmos3_pin.center()
bottom_pin_offset = nmos3_pin.center()
# PMOS1 to output
self.add_path(self.route_layer, [top_left_pin_offset,
vector(top_left_pin_offset.x, out_offset.y),
out_offset])
# PMOS3 to output
self.add_path(self.route_layer, [top_right_pin_offset,
vector(top_right_pin_offset.x, out_offset.y),
out_offset])
# NMOS3 to output
mid2_offset = vector(out_offset.x, bottom_pin_offset.y)
self.add_path(self.route_layer,
[bottom_pin_offset, mid2_offset],
width=nmos3_pin.height())
mid3_offset = vector(out_offset.x, nmos3_pin.by())
self.add_path(self.route_layer, [mid3_offset, out_offset])
self.add_layout_pin_rect_center(text="Z",
layer=self.route_layer,
offset=out_offset)
def analytical_power(self, corner, load):
"""Returns dynamic and leakage power. Results in nW"""
c_eff = self.calculate_effective_capacitance(load)
freq = spice["default_event_frequency"]
power_dyn = self.calc_dynamic_power(corner, c_eff, freq)
power_leak = spice["nand3_leakage"]
total_power = self.return_power(power_dyn, power_leak)
return total_power
def calculate_effective_capacitance(self, load):
"""Computes effective capacitance. Results in fF"""
c_load = load
# In fF
c_para = spice["min_tx_drain_c"] * (self.nmos_size / parameter["min_tx_size"])
transition_prob = 0.1094
return transition_prob * (c_load + c_para)
def input_load(self):
"""Return the relative input capacitance of a single input"""
return self.nmos_size + self.pmos_size
def get_stage_effort(self, cout, inp_is_rise=True):
"""
Returns an object representing the parameters for delay in tau units.
Optional is_rise refers to the input direction rise/fall.
Input inverted by this stage.
"""
parasitic_delay = 3
return logical_effort.logical_effort(self.name,
self.size,
self.input_load(),
cout,
parasitic_delay,
not inp_is_rise)
def build_graph(self, graph, inst_name, port_nets):
"""
Adds edges based on inputs/outputs.
Overrides base class function.
"""
self.add_graph_edges(graph, port_nets)