OpenRAM/compiler/modules/bitcell_base.py

279 lines
10 KiB
Python

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2022 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
from openram import debug
from openram.base import design
from openram.base import logical_effort
from openram.tech import parameter, drc, layer, spice
from openram import OPTS
class bitcell_base(design):
"""
Base bitcell parameters to be over-riden.
"""
def __init__(self, name, cell_name=None, prop=None):
design.__init__(self, name, cell_name, prop)
# Set the bitcell specific properties
if prop:
self.storage_nets = prop.storage_nets
self.nets_match = self.do_nets_exist(prop.storage_nets)
self.mirror = prop.mirror
self.end_caps = prop.end_caps
def get_stage_effort(self, load):
parasitic_delay = 1
# This accounts for bitline being drained
# thought the access TX and internal node
size = 0.5
# Assumes always a minimum sizes inverter.
# Could be specified in the tech.py file.
cin = 3
# min size NMOS gate load
read_port_load = 0.5
return logical_effort('bitline',
size,
cin,
load + read_port_load,
parasitic_delay,
False)
def analytical_power(self, corner, load):
"""Bitcell power in nW. Only characterizes leakage."""
from openram.tech import spice
leakage = spice["bitcell_leakage"]
# FIXME
dynamic = 0
total_power = self.return_power(dynamic, leakage)
return total_power
def input_load(self):
""" Return the relative capacitance of the access transistor gates """
# FIXME: This applies to bitline capacitances as well.
# FIXME: sizing is not accurate with the handmade cell.
# Change once cell widths are fixed.
access_tx_cin = parameter["6T_access_size"] / drc["minwidth_tx"]
return 2 * access_tx_cin
def get_wl_cin(self):
"""Return the relative capacitance of the access transistor gates"""
# This is a handmade cell so the value must be entered
# in the tech.py file or estimated.
# Calculated in the tech file by summing the widths of all
# the related gates and dividing by the minimum width.
# FIXME: sizing is not accurate with the handmade cell.
# Change once cell widths are fixed.
access_tx_cin = parameter["6T_access_size"] / drc["minwidth_tx"]
return 2 * access_tx_cin
def get_storage_net_names(self):
"""
Returns names of storage nodes in bitcell in
[non-inverting, inverting] format.
"""
# Checks that they do exist
if self.nets_match:
return self.storage_nets
else:
fmt_str = "Storage nodes={} not found in spice file."
debug.warning(fmt_str.format(self.storage_nets))
return None
def get_storage_net_offset(self):
"""
Gets the location of the storage net labels to add top level
labels for pex simulation.
"""
# If we generated the bitcell, we already know where Q and Q_bar are
if OPTS.bitcell != "pbitcell":
self.storage_net_offsets = []
for i in range(len(self.get_storage_net_names())):
for text in self.gds.getTexts(layer["m1"]):
if self.storage_nets[i] == text.textString.rstrip('\x00'):
self.storage_net_offsets.append(text.coordinates[0])
for i in range(len(self.storage_net_offsets)):
self.storage_net_offsets[i] = tuple([self.gds.info["units"][0] * x for x in self.storage_net_offsets[i]])
return(self.storage_net_offsets)
def get_bitline_offset(self):
bl_names = self.get_all_bl_names()
br_names = self.get_all_br_names()
found_bl = []
found_br = []
self.bl_offsets = []
self.br_offsets = []
for i in range(len(bl_names)):
for text in self.gds.getTexts(layer["m2"]):
if not bl_names[i] in found_bl:
if bl_names[i] == text.textString.rstrip('\x00'):
self.bl_offsets.append(text.coordinates[0])
found_bl.append(bl_names[i])
continue
for i in range(len(br_names)):
for text in self.gds.getTexts(layer["m2"]):
if not br_names[i] in found_br:
if br_names[i] == text.textString.rstrip('\x00'):
self.br_offsets.append(text.coordinates[0])
found_br.append(br_names[i])
continue
for i in range(len(self.bl_offsets)):
self.bl_offsets[i] = tuple([self.gds.info["units"][0] * x for x in self.bl_offsets[i]])
for i in range(len(self.br_offsets)):
self.br_offsets[i] = tuple([self.gds.info["units"][0] * x for x in self.br_offsets[i]])
return(self.bl_offsets, self.br_offsets, found_bl, found_br)
def get_normalized_storage_nets_offset(self):
"""
Convert storage net offset to be relative to the bottom left corner
of the bitcell. This is useful for making sense of offsets outside
of the bitcell.
"""
if OPTS.bitcell != "pbitcell":
normalized_storage_net_offset = self.get_storage_net_offset()
else:
net_offset = self.get_storage_net_offset()
Q_x = net_offset[0][0] - self.leftmost_xpos
Q_y = net_offset[0][1] - self.botmost_ypos
Q_bar_x = net_offset[1][0] - self.leftmost_xpos
Q_bar_y = net_offset[1][1] - self.botmost_ypos
normalized_storage_net_offset = [[Q_x, Q_y], [Q_bar_x, Q_bar_y]]
return normalized_storage_net_offset
def get_normalized_bitline_offset(self):
return self.get_bitline_offset()
def build_graph(self, graph, inst_name, port_nets):
"""
By default, bitcells won't be part of the graph.
"""
return
def get_all_wl_names(self):
""" Creates a list of all wordline pin names """
row_pins = ["wl"]
return row_pins
def get_all_bitline_names(self):
""" Creates a list of all bitline pin names (both bl and br) """
return ["bl", "br"]
def get_all_bl_names(self):
""" Creates a list of all bl pins names """
return ["bl"]
def get_all_br_names(self):
""" Creates a list of all br pins names """
return ["br"]
def get_bl_name(self, port=0):
"""Get bl name"""
debug.check(port == 0, "One port for bitcell only.")
return "bl"
def get_br_name(self, port=0):
"""Get bl name"""
debug.check(port == 0, "One port for bitcell only.")
return "br"
def get_wl_name(self, port=0):
"""Get wl name"""
debug.check(port == 0, "One port for bitcell only.")
return "wl"
def get_on_resistance(self):
"""On resistance of pinv, defined by single nmos"""
is_nchannel = True
stack = 2 # for access and inv tx
is_cell = False
return self.tr_r_on(drc["minwidth_tx"], is_nchannel, stack, is_cell)
def get_input_capacitance(self):
"""Input cap of input, passes width of gates to gate cap function"""
# Input cap of both access TX connected to the wordline
return self.gate_c(2*parameter["6T_access_size"])
def get_intrinsic_capacitance(self):
"""Get the drain capacitances of the TXs in the gate."""
stack = 1
mult = 1
# FIXME: Need to define TX sizes of bitcell storage node. Using
# min_width as a temp value
# Add the inverter drain Cap and the bitline TX drain Cap
nmos_drain_c = self.drain_c_(drc["minwidth_tx"]*mult,
stack,
mult)
pmos_drain_c = self.drain_c_(drc["minwidth_tx"]*mult,
stack,
mult)
bl_nmos_drain_c = self.drain_c_(parameter["6T_access_size"],
stack,
mult)
return nmos_drain_c + pmos_drain_c + bl_nmos_drain_c
def module_wire_c(self):
"""Capacitance of bitline"""
# FIXME: entire bitline cap is calculated here because of the current
# graph implementation so array dims are all re-calculated here. May
# be incorrect if dim calculations change
cells_in_col = OPTS.num_words/OPTS.words_per_row
return cells_in_col*self.height*spice["wire_c_per_um"]
def module_wire_r(self):
"""Resistance of bitline"""
# FIXME: entire bitline r is calculated here because of the current
# graph implementation so array dims are all re-calculated. May
# be incorrect if dim calculations change
cells_in_col = OPTS.num_words/OPTS.words_per_row
return cells_in_col*self.height*spice["wire_r_per_um"]
def cacti_rc_delay(self, inputramptime, tf, vs1, vs2, rise, extra_param_dict):
""" Special RC delay function used by CACTI for bitline delay
"""
import math
vdd = extra_param_dict['vdd']
m = vdd / inputramptime #v_wl = vdd for OpenRAM
# vdd == V_b_pre in OpenRAM. Bitline swing is assumed 10% of vdd
tstep = tf * math.log(vdd/(vdd - 0.1*vdd))
if tstep > 0.5*(vdd-spice["nom_threshold"])/m:
delay = tstep + (vdd-spice["nom_threshold"])/(2*m)
else:
delay = math.sqrt(2*tstep*(vdd-spice["nom_threshold"])/m)
return delay
def build_graph(self, graph, inst_name, port_nets):
"""
Adds edges based on inputs/outputs.
Overrides base class function.
"""
debug.error("Must override build_graph function in bitcell base class.")
def is_non_inverting(self):
"""Return input to output polarity for module"""
return False