OpenRAM/compiler/pgates/ptristate_inv.py

221 lines
8.0 KiB
Python

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import contact
import pgate
import debug
from tech import drc, parameter, spice
from vector import vector
from math import ceil
from globals import OPTS
from utils import round_to_grid
import logical_effort
from sram_factory import factory
class ptristate_inv(pgate.pgate):
"""
ptristate generates gds of a parametrically sized tristate inverter.
There is some flexibility in the size, but we do not allow multiple fingers
to fit in the cell height.
"""
def __init__(self, name, size=1, height=None):
debug.info(2, "creating ptristate inv {0} with size of {1}".format(name, size))
self.add_comment("size: {}".format(size))
# We are 2x since there are two series devices
self.size = 2*size
self.nmos_size = size
self.beta = parameter["beta"]
self.pmos_size = self.beta*size
self.nmos_width = self.nmos_size * drc("minwidth_tx")
self.pmos_width = self.pmos_size * drc("minwidth_tx")
# Creates the netlist and layout
pgate.pgate.__init__(self, name, height)
def create_netlist(self):
""" Calls all functions related to the generation of the netlist """
self.add_pins()
self.add_ptx()
self.create_ptx()
def create_layout(self):
""" Calls all functions related to the generation of the layout """
self.setup_layout_constants()
self.route_supply_rails()
self.place_ptx()
self.add_well_contacts()
self.extend_wells(self.well_pos)
self.connect_rails()
self.route_inputs()
self.route_outputs()
def add_pins(self):
""" Adds pins for spice netlist """
self.add_pin_list(["in", "out", "en", "en_bar", "vdd", "gnd"])
def setup_layout_constants(self):
"""
Pre-compute some handy layout parameters.
"""
# Compute the other pmos2 location, but determining offset to overlap the
# source and drain pins
self.overlap_offset = self.pmos.get_pin("D").ll() - self.pmos.get_pin("S").ll()
# Two PMOS devices and a well contact. Separation between each.
# Enclosure space on the sides.
self.well_width = 2*self.pmos.active_width + drc("well_enclosure_active")
# Add an extra space because we route the output on the right of the S/D
self.width = self.well_width + 0.5*self.m1_space
# Height is an input parameter, so it is not recomputed.
# Make sure we can put a well above and below
self.top_bottom_space = max(contact.well.width, contact.well.height)
def add_ptx(self):
""" Create the PMOS and NMOS transistors. """
self.nmos = factory.create(module_type="ptx",
width=self.nmos_width,
mults=1,
tx_type="nmos")
self.add_mod(self.nmos)
self.pmos = factory.create(module_type="ptx",
width=self.pmos_width,
mults=1,
tx_type="pmos")
self.add_mod(self.pmos)
def route_supply_rails(self):
""" Add vdd/gnd rails to the top and bottom. """
self.add_layout_pin_rect_center(text="gnd",
layer="metal1",
offset=vector(0.5*self.width,0),
width=self.width)
self.add_layout_pin_rect_center(text="vdd",
layer="metal1",
offset=vector(0.5*self.width,self.height),
width=self.width)
def create_ptx(self):
"""
Create the PMOS and NMOS netlist.
"""
# These are the inverter PMOS/NMOS
self.pmos1_inst=self.add_inst(name="ptri_pmos1", mod=self.pmos)
self.connect_inst(["vdd", "in", "n1", "vdd"])
self.nmos1_inst=self.add_inst(name="ptri_nmos1", mod=self.nmos)
self.connect_inst(["gnd", "in", "n2", "gnd"])
# These are the tristate PMOS/NMOS
self.pmos2_inst = self.add_inst(name="ptri_pmos2", mod=self.pmos)
self.connect_inst(["out", "en_bar", "n1", "vdd"])
self.nmos2_inst=self.add_inst(name="ptri_nmos2", mod=self.nmos)
self.connect_inst(["out", "en", "n2", "gnd"])
def place_ptx(self):
"""
Place PMOS and NMOS to the layout at the upper-most and lowest position
to provide maximum routing in channel
"""
pmos_yoff = self.height - self.pmos.active_height - self.top_bottom_space - 0.5*contact.well.height
nmos_yoff = self.top_bottom_space + 0.5*contact.well.height
# Tristate transistors
pmos1_pos = vector(self.pmos.active_offset.x, pmos_yoff)
self.pmos1_inst.place(pmos1_pos)
nmos1_pos = vector(self.pmos.active_offset.x, nmos_yoff)
self.nmos1_inst.place(nmos1_pos)
# Inverter transistors
self.pmos2_pos = pmos1_pos + self.overlap_offset
self.pmos2_inst.place(self.pmos2_pos)
self.nmos2_pos = nmos1_pos + self.overlap_offset
self.nmos2_inst.place(self.nmos2_pos)
# Output position will be in between the PMOS and NMOS
self.output_pos = vector(0, 0.5*(pmos_yoff + nmos_yoff + self.nmos.height))
# This will help with the wells
self.well_pos = vector(0,self.nmos1_inst.uy())
def route_inputs(self):
""" Route the gates """
self.route_input_gate(self.pmos1_inst, self.nmos1_inst, self.output_pos.y, "in", position="farleft")
self.route_single_gate(self.pmos2_inst, "en_bar", position="left")
self.route_single_gate(self.nmos2_inst, "en", position="left")
def route_outputs(self):
""" Route the output (drains) together. """
nmos_drain_pin = self.nmos2_inst.get_pin("D")
pmos_drain_pin = self.pmos2_inst.get_pin("D")
nmos_drain_pos = nmos_drain_pin.lr()
pmos_drain_pos = pmos_drain_pin.ur()
self.add_layout_pin(text="out",
layer="metal1",
offset=nmos_drain_pos,
height=pmos_drain_pos.y-nmos_drain_pos.y)
def add_well_contacts(self):
""" Add n/p well taps to the layout and connect to supplies AFTER the wells are created """
layer_stack = ("active", "contact", "metal1")
drain_pos = self.nmos1_inst.get_pin("S").center()
vdd_pos = self.get_pin("vdd").center()
self.nwell_contact=self.add_via_center(layers=layer_stack,
offset=vector(drain_pos.x,vdd_pos.y),
implant_type="n",
well_type="n")
gnd_pos = self.get_pin("gnd").center()
self.pwell_contact=self.add_via_center(layers=layer_stack,
offset=vector(drain_pos.x,gnd_pos.y),
implant_type="p",
well_type="p")
def connect_rails(self):
""" Connect the nmos and pmos to its respective power rails """
self.connect_pin_to_rail(self.nmos1_inst,"S","gnd")
self.connect_pin_to_rail(self.pmos1_inst,"S","vdd")
def analytical_power(self, corner, load):
"""Returns dynamic and leakage power. Results in nW"""
#Power in this module currently not defined. Returns 0 nW (leakage and dynamic).
total_power = self.return_power()
return total_power
def get_cin(self):
return 9*spice["min_tx_gate_c"]