OpenRAM/compiler/router/hanan_graph.py

260 lines
9.5 KiB
Python

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2023 Regents of the University of California, Santa Cruz
# All rights reserved.
#
import heapq
from copy import deepcopy
from openram import debug
from openram.base.vector import vector
from openram.base.vector3d import vector3d
from openram.tech import drc
from .direction import direction
from .hanan_node import hanan_node
from .hanan_probe import hanan_probe
class hanan_graph:
""" This is the Hanan graph created from the blockages. """
def __init__(self, router):
# This is the Hanan router that uses this graph
self.router = router
self.source_nodes = []
self.target_nodes = []
def inside_shape(self, point, shape):
""" Return if the point is inside the shape. """
# Check if they're on the same layer
if point.z != self.router.get_zindex(shape.lpp):
return False
# Check if the point is inside the shape
ll, ur = shape.rect
return shape.on_segment(ll, point, ur)
def is_probe_blocked(self, p1, p2):
"""
Return if a probe sent from p1 to p2 encounters a blockage.
The probe must be sent vertically or horizontally.
This function assumes that p1 and p2 are on the same layer.
"""
probe_shape = hanan_probe(p1, p2, self.router.vert_lpp if p1.z else self.router.horiz_lpp)
# Check if any blockage blocks this probe
for blockage in self.graph_blockages:
# Check if two shapes overlap
# Inflated blockages of pins don't block probes
if blockage.overlaps(probe_shape) and (blockage.name != self.source.name or not blockage.inflated_from.overlaps(probe_shape)):
return True
return False
def create_graph(self, source, target):
""" Create the Hanan graph to run routing on later. """
debug.info(2, "Creating the Hanan graph for source '{}' and target'{}'.".format(source, target))
self.source = source
self.target = target
# Find the region to be routed and only include objects inside that region
region = deepcopy(source)
region.bbox([target])
region = region.inflated_pin(multiple=1)
debug.info(3, "Routing region is {}".format(region.rect))
# Find the blockages that are in the routing area
self.graph_blockages = []
for blockage in self.router.blockages:
# FIXME: Include pins as blockages as well to prevent DRC errors
if blockage.name == self.source.name:
continue
# Set the region's lpp to current blockage's lpp so that the
# overlaps method works
region.lpp = blockage.lpp
if region.overlaps(blockage):
self.graph_blockages.append(blockage)
debug.info(3, "Number of blockages detected in the routing region: {}".format(len(self.graph_blockages)))
# Create the Hanan graph
x_values, y_values = self.generate_cartesian_values()
self.generate_hanan_nodes(x_values, y_values)
self.remove_blocked_nodes()
debug.info(3, "Number of nodes in the routing graph: {}".format(len(self.nodes)))
def generate_cartesian_values(self):
"""
Generate x and y values from all the corners of the shapes in the
routing region.
"""
x_values = set()
y_values = set()
# Add inner values for blockages of the routed type
x_offset = vector(self.router.offset, 0)
y_offset = vector(0, self.router.offset)
for shape in [self.source, self.target]:
aspect_ratio = shape.width() / shape.height()
# If the pin is tall or fat, add two points on the ends
if aspect_ratio <= 0.5: # Tall pin
points = [shape.bc() + y_offset, shape.uc() - y_offset]
elif aspect_ratio >= 2: # Fat pin
points = [shape.lc() + x_offset, shape.rc() - x_offset]
else: # Square-like pin
points = [shape.center()]
for p in points:
x_values.add(p.x)
y_values.add(p.y)
# Add corners for blockages
offset = drc["grid"]
for blockage in self.graph_blockages:
ll, ur = blockage.rect
# Add minimum offset to the blockage corner nodes to prevent overlaps
x_values.update([ll.x - offset, ur.x + offset])
y_values.update([ll.y - offset, ur.y + offset])
# Sort x and y values
x_values = list(x_values)
y_values = list(y_values)
x_values.sort()
y_values.sort()
return x_values, y_values
def generate_hanan_nodes(self, x_values, y_values):
"""
Generate all Hanan nodes using the cartesian values and connect the
orthogonal neighbors.
"""
y_len = len(y_values)
left_offset = -(y_len * 2)
self.nodes = []
for x in x_values:
for y in y_values:
below_node = hanan_node([x, y, 0])
above_node = hanan_node([x, y, 1])
# Connect these two neighbors
below_node.add_neighbor(above_node)
# Find potential orthogonal neighbor nodes
belows = []
aboves = []
count = len(self.nodes) // 2
if count % y_len: # Down
belows.append(-2)
aboves.append(-1)
if count >= y_len: # Left
belows.append(left_offset)
aboves.append(left_offset + 1)
# Add these connections if not blocked by a blockage
for i in belows:
node = self.nodes[i]
if not self.is_probe_blocked(below_node.center, node.center):
below_node.add_neighbor(node)
for i in aboves:
node = self.nodes[i]
if not self.is_probe_blocked(above_node.center, node.center):
above_node.add_neighbor(node)
# Save source and target nodes
for node in [below_node, above_node]:
if self.inside_shape(node.center, self.source):
self.source_nodes.append(node)
elif self.inside_shape(node.center, self.target):
self.target_nodes.append(node)
self.nodes.append(below_node)
self.nodes.append(above_node)
def remove_blocked_nodes(self):
""" Remove the Hanan nodes that are blocked by a blockage. """
for i in range(len(self.nodes) - 1, -1, -1):
node = self.nodes[i]
point = node.center
for blockage in self.graph_blockages:
# Remove if the node is inside a blockage
# If the blockage is an inflated routable, remove if outside
# the routable shape
if self.inside_shape(point, blockage) and (blockage.name != self.source.name or not self.inside_shape(point, blockage.inflated_from)):
node.remove_all_neighbors()
self.nodes.remove(node)
break
def find_shortest_path(self):
"""
Find the shortest path from the source node to target node using the
A* algorithm.
"""
# Heuristic function to calculate the scores
def h(node):
""" Return the estimated distance to the closest target. """
min_dist = float("inf")
for t in self.target_nodes:
dist = t.center.distance(node.center) + abs(t.center.z - node.center.z)
if dist < min_dist:
min_dist = dist
return min_dist
# Initialize data structures to be used for A* search
queue = []
close_set = set()
came_from = {}
g_scores = {}
f_scores = {}
# Initialize score values for the source nodes
for node in self.source_nodes:
g_scores[node.id] = 0
f_scores[node.id] = h(node)
heapq.heappush(queue, (f_scores[node.id], node.id, node))
# Run the A* algorithm
while len(queue) > 0:
# Get the closest node from the queue
current = heapq.heappop(queue)[2]
# Skip this node if already discovered
if current in close_set:
continue
close_set.add(current)
# Check if we've reached the target
if current in self.target_nodes:
path = []
while current.id in came_from:
path.append(current)
current = came_from[current.id]
path.append(current)
return path
# Get the previous node to better calculate the next costs
prev_node = None
if current.id in came_from:
prev_node = came_from[current.id]
# Update neighbor scores
for node in current.neighbors:
tentative_score = current.get_edge_cost(node, prev_node) + g_scores[current.id]
if node.id not in g_scores or tentative_score < g_scores[node.id]:
came_from[node.id] = current
g_scores[node.id] = tentative_score
f_scores[node.id] = tentative_score + h(node)
heapq.heappush(queue, (f_scores[node.id], node.id, node))
# Return None if not connected
return None