OpenRAM/compiler/router/signal_router.py

164 lines
4.9 KiB
Python

import gdsMill
import tech
from contact import contact
import math
import debug
from pin_layout import pin_layout
from vector import vector
from vector3d import vector3d
from globals import OPTS
from router import router
class signal_router(router):
"""A router class to read an obstruction map from a gds and plan a
route on a given layer. This is limited to two layer routes.
"""
def __init__(self, gds_name=None, module=None):
"""Use the gds file for the blockages with the top module topName and
layers for the layers to route on
"""
router.__init__(self, gds_name, module)
# all the paths we've routed so far (to supplement the blockages)
self.paths = []
def create_routing_grid(self):
"""
Create a sprase routing grid with A* expansion functions.
"""
# We will add a halo around the boundary
# of this many tracks
size = self.ur - self.ll
debug.info(1,"Size: {0} x {1}".format(size.x,size.y))
import astar_grid
self.rg = astar_grid.astar_grid()
def route(self, cell, layers, src, dest, detour_scale=5):
"""
Route a single source-destination net and return
the simplified rectilinear path. Cost factor is how sub-optimal to explore for a feasible route.
This is used to speed up the routing when there is not much detouring needed.
"""
debug.info(1,"Running signal router from {0} to {1}...".format(src,dest))
self.cell = cell
self.source_pin_name = src
self.target_pin_name = dest
# Clear the pins if we have previously routed
if (hasattr(self,'rg')):
self.clear_pins()
else:
# Set up layers and track sizes
self.set_layers(layers)
# Creat a routing grid over the entire area
# FIXME: This could be created only over the routing region,
# but this is simplest for now.
self.create_routing_grid()
# This will get all shapes as blockages
self.find_blockages()
# Get the pin shapes
self.get_pin(src)
self.get_pin(dest)
# Now add the blockages (all shapes except the src/tgt pins)
self.add_blockages()
# Add blockages from previous paths
self.add_path_blockages()
# Now add the src/tgt if they are not blocked by other shapes
self.add_pin(src,True)
self.add_pin(dest,False)
# returns the path in tracks
(path,cost) = self.rg.route(detour_scale)
if path:
debug.info(1,"Found path: cost={0} ".format(cost))
debug.info(2,str(path))
self.add_route(path)
return True
else:
self.write_debug_gds()
# clean up so we can try a reroute
self.clear_pins()
return False
def add_route(self,path):
"""
Add the current wire route to the given design instance.
"""
debug.info(3,"Set path: " + str(path))
# Keep track of path for future blockages
self.paths.append(path)
# This is marked for debug
self.rg.add_path(path)
# For debugging... if the path failed to route.
if False or path==None:
self.write_debug_gds()
# First, simplify the path for
#debug.info(1,str(self.path))
contracted_path = self.contract_path(path)
debug.info(1,str(contracted_path))
# convert the path back to absolute units from tracks
abs_path = map(self.convert_point_to_units,contracted_path)
debug.info(1,str(abs_path))
self.cell.add_route(self.layers,abs_path)
def get_inertia(self,p0,p1):
"""
Sets the direction based on the previous direction we came from.
"""
# direction (index) of movement
if p0.x!=p1.x:
return 0
elif p0.y!=p1.y:
return 1
else:
# z direction
return 2
def contract_path(self,path):
"""
Remove intermediate points in a rectilinear path.
"""
newpath = [path[0]]
for i in range(1,len(path)-1):
prev_inertia=self.get_inertia(path[i-1],path[i])
next_inertia=self.get_inertia(path[i],path[i+1])
# if we switch directions, add the point, otherwise don't
if prev_inertia!=next_inertia:
newpath.append(path[i])
# always add the last path
newpath.append(path[-1])
return newpath
def add_path_blockages(self):
"""
Go through all of the past paths and add them as blockages.
This is so we don't have to write/reload the GDS.
"""
for path in self.paths:
for grid in path:
self.rg.set_blocked(grid)