OpenRAM/compiler/router/router.py

411 lines
15 KiB
Python

import gdsMill
import tech
from contact import contact
import math
import debug
from vector import vector
import grid
class router:
"""A router class to read an obstruction map from a gds and plan a
route on a given layer. This is limited to two layer routes.
"""
def __init__(self, gds_name):
"""Use the gds file for the blockages with the top module topName and
layers for the layers to route on
"""
# Load the gds file and read in all the shapes
self.gds_name = gds_name
self.layout = gdsMill.VlsiLayout(units=tech.GDS["unit"])
self.reader = gdsMill.Gds2reader(self.layout)
self.reader.loadFromFile(gds_name)
self.top_name = self.layout.rootStructureName
# A list of pin names for source and dest
self.pin_names = []
# The map of pin names to list of all pin shapes for a pin.
self.pin_shapes = {}
# The corresponding layers of the above pin shapes
self.pin_layers = {}
# Used to track which shapes should not become blockages. This
# will contain all of both source and dest pin shapes in units not tracks.
self.all_pin_shapes = []
# The boundary will determine the limits to the size of the routing grid
self.boundary = self.layout.measureBoundary(self.top_name)
self.ll = vector(self.boundary[0])
self.ur = vector(self.boundary[1])
def set_top(self,top_name):
""" If we want to route something besides the top-level cell."""
self.top_name = top_name
def set_layers(self, layers):
""" Allows us to change the layers that we are routing on. """
self.layers = layers
(horiz_layer, via_layer, vert_layer) = self.layers
self.vert_layer_name = vert_layer
self.vert_layer_width = tech.drc["minwidth_{0}".format(vert_layer)]
self.vert_layer_number = tech.layer[vert_layer]
self.horiz_layer_name = horiz_layer
self.horiz_layer_width = tech.drc["minwidth_{0}".format(horiz_layer)]
self.horiz_layer_number = tech.layer[horiz_layer]
# Contacted track spacing.
via_connect = contact(self.layers, (1, 1))
max_via_size = max(via_connect.width,via_connect.height)
horiz_layer_spacing = tech.drc[str(self.horiz_layer_name)+"_to_"+str(self.horiz_layer_name)]
vert_layer_spacing = tech.drc[str(self.vert_layer_name)+"_to_"+str(self.vert_layer_name)]
self.horiz_track_width = max_via_size + horiz_layer_spacing
self.vert_track_width = max_via_size + vert_layer_spacing
# We'll keep horizontal and vertical tracks the same for simplicity.
self.track_width = max(self.horiz_track_width,self.vert_track_width)
debug.info(1,"Track width: "+str(self.track_width))
self.track_widths = [self.track_width] * 2
self.track_factor = [1/self.track_width] * 2
debug.info(1,"Track factor: {0}".format(self.track_factor))
def create_routing_grid(self):
"""
Create a routing grid that spans given area. Wires cannot exist outside region.
"""
# We will add a halo around the boundary
# of this many tracks
size = self.ur - self.ll
debug.info(1,"Size: {0} x {1}".format(size.x,size.y))
self.rg = grid.grid()
def find_pin(self,pin):
"""
Finds the pin shapes and converts to tracks
"""
# Returns all the shapes that enclose a pin on a given layer
(pin_name,pin_layer,pin_shapes) = self.layout.readAllPinShapes(str(pin))
self.pin_shapes[str(pin)]=[]
self.pin_names.append(pin_name)
for pin_shape in pin_shapes:
debug.info(2,"Find pin {0} layer {1} shape {2}".format(pin_name,str(pin_layer),str(pin_shape)))
# repack the shape as a pair of vectors rather than four values
shape=[vector(pin_shape[0],pin_shape[1]),vector(pin_shape[2],pin_shape[3])]
# convert the pin coordinates to tracks and round the sizes down
self.pin_shapes[str(pin)].append(shape)
self.pin_layers[str(pin)] = pin_layer
self.all_pin_shapes.append(shape)
return self.pin_shapes[str(pin)]
def find_blockages(self):
"""
Iterate through all the layers and write the obstacles to the routing grid.
"""
if len(self.pin_names)!=2:
debug.error("Must set pins before creating blockages.",-1)
for layer in self.layers:
self.write_obstacle(self.top_name)
def clear(self):
"""
Reset the source and destination pins to start a new routing.
Convert the source/dest to blockages.
Keep the other blockages.
Clear other pins from blockages?
"""
self.source = []
self.dest = []
def route(self, layers, src, dest):
"""
Route a single source-destination net and return
the simplified rectilinear path.
"""
# Clear the pins if we have previously routed
self.clear_pins()
# Set up layers and track sizes
self.set_layers(layers)
# Creat a routing grid over the entire area
# FIXME: This could be created only over the routing region,
# but this is simplest for now.
self.create_routing_grid()
self.set_source(src)
self.set_target(dest)
self.find_blockages()
#self.rg.view("preroute.png")
# returns the path in tracks
(self.path,cost) = self.rg.route()
debug.info(1,"Found path: cost={0} ".format(cost))
debug.info(2,str(self.path))
self.set_path(self.path)
#self.rg.view("postroute.png")
return
def add_route(self,cell):
"""
Add the current wire route to the given design instance.
"""
# First, simplify the path for
debug.info(1,str(self.path))
contracted_path = self.contract_path(self.path)
debug.info(1,str(contracted_path))
# Make sure there's a pin enclosure on the source and dest
src_shape = self.convert_track_to_shape(contracted_path[0])
cell.add_rect(layer=self.layers[contracted_path[0].z],
offset=src_shape[0],
width=src_shape[1].x-src_shape[0].x,
height=src_shape[1].y-src_shape[0].y)
dest_shape = self.convert_track_to_shape(contracted_path[-1])
cell.add_rect(layer=self.layers[contracted_path[-1].z],
offset=dest_shape[0],
width=dest_shape[1].x-dest_shape[0].x,
height=dest_shape[1].y-dest_shape[0].y)
# convert the path back to absolute units from tracks
abs_path = map(self.convert_point_to_units,contracted_path)
cell.add_wire(self.layers,abs_path)
debug.info(1,str(abs_path))
# Check if a via is needed at the start point
if (contracted_path[0].z!=contracted_path[1].z):
# offset this by 1/2 the via size
c=contact(self.layers, (1, 1))
via_offset = vector(-0.5*c.width,-0.5*c.height)
cell.add_via(self.layers,abs_path[0]+via_offset)
# Check if a via is needed at the end point
if (contracted_path[-1].z!=contracted_path[-2].z):
# offset this by 1/2 the via size
c=contact(self.layers, (1, 1))
via_offset = vector(-0.5*c.width,-0.5*c.height)
cell.add_via(self.layers,abs_path[-1]+via_offset)
def create_steiner_routes(self,pins):
"""
Find a set of steiner points and then return the list of
point-to-point routes.
"""
pass
def find_steiner_points(self,pins):
"""
Find the set of steiner points and return them.
"""
pass
def translate_coordinates(self, coord, mirr, angle, xyShift):
"""
Calculate coordinates after flip, rotate, and shift
"""
coordinate = []
for item in coord:
x = (item[0]*math.cos(angle)-item[1]*mirr*math.sin(angle)+xyShift[0])
y = (item[0]*math.sin(angle)+item[1]*mirr*math.cos(angle)+xyShift[1])
coordinate += [(x, y)]
return coordinate
def convert_shape_to_units(self, shape):
"""
Scale a shape (two vector list) to user units
"""
unit_factor = [tech.GDS["unit"][0]] * 2
ll=shape[0].scale(unit_factor)
ur=shape[1].scale(unit_factor)
return [ll,ur]
def min_max_coord(self, coord):
"""
Find the lowest and highest corner of a Rectangle
"""
coordinate = []
minx = min(coord[0][0], coord[1][0], coord[2][0], coord[3][0])
maxx = max(coord[0][0], coord[1][0], coord[2][0], coord[3][0])
miny = min(coord[0][1], coord[1][1], coord[2][1], coord[3][1])
maxy = max(coord[0][1], coord[1][1], coord[2][1], coord[3][1])
coordinate += [vector(minx, miny)]
coordinate += [vector(maxx, maxy)]
return coordinate
def get_inertia(self,p0,p1):
"""
Sets the direction based on the previous direction we came from.
"""
# direction (index) of movement
if p0.x!=p1.x:
return 0
elif p0.y!=p1.y:
return 1
else:
# z direction
return 2
def contract_path(self,path):
"""
Remove intermediate points in a rectilinear path.
"""
newpath = [path[0]]
for i in range(1,len(path)-1):
prev_inertia=self.get_inertia(path[i-1],path[i])
next_inertia=self.get_inertia(path[i],path[i+1])
# if we switch directions, add the point, otherwise don't
if prev_inertia!=next_inertia:
newpath.append(path[i])
# always add the last path
newpath.append(path[-1])
return newpath
def set_path(self,path):
"""
Mark the path in the routing grid.
"""
debug.info(3,"Set path: " + str(path))
self.rg.set_path(path)
def set_source(self,name):
"""
Mark the grids that are in the pin rectangle ranges to have the source property.
"""
shapes = self.find_pin(name)
zindex = 0 if self.pin_layers[name]==self.horiz_layer_number else 1
for shape in shapes:
shape_in_tracks=self.convert_shape_to_tracks(shape)
debug.info(1,"Set source: " + str(name) + " " + str(shape_in_tracks) + " z=" + str(zindex))
self.rg.set_source(shape_in_tracks[0],shape_in_tracks[1],zindex)
def set_target(self,name):
"""
Mark the grids that are in the pin rectangle ranges to have the target property.
"""
shapes = self.find_pin(name)
zindex = 0 if self.pin_layers[name]==self.horiz_layer_number else 1
for shape in shapes:
shape_in_tracks=self.convert_shape_to_tracks(shape)
debug.info(1,"Set target: " + str(name) + " " + str(shape_in_tracks) + " z=" + str(zindex))
self.rg.set_target(shape_in_tracks[0],shape_in_tracks[1],zindex)
def write_obstacle(self, sref, mirr = 1, angle = math.radians(float(0)), xyShift = (0, 0)):
"""
Recursive write boundaries as blockages to the routing grid.
Recurses for each Structure in GDS.
"""
for boundary in self.layout.structures[sref].boundaries:
coord_trans = self.translate_coordinates(boundary.coordinates, mirr, angle, xyShift)
shape_coords = self.min_max_coord(coord_trans)
shape = self.convert_shape_to_units(shape_coords)
# only consider the two layers that we are routing on
if boundary.drawingLayer in [self.vert_layer_number,self.horiz_layer_number]:
zlayer = 0 if boundary.drawingLayer==self.horiz_layer_number else 1
# don't add a blockage if this shape was a pin shape
if shape not in self.all_pin_shapes:
[ll,ur]=self.convert_shape_to_tracks(shape)
self.rg.add_blockage(ll,ur,zlayer)
# recurse given the mirror, angle, etc.
for cur_sref in self.layout.structures[sref].srefs:
sMirr = 1
if cur_sref.transFlags[0] == True:
sMirr = -1
sAngle = math.radians(float(0))
if cur_sref.rotateAngle:
sAngle = math.radians(float(cur_sref.rotateAngle))
sAngle += angle
x = cur_sref.coordinates[0]
y = cur_sref.coordinates[1]
newX = (x)*math.cos(angle) - mirr*(y)*math.sin(angle) + xyShift[0]
newY = (x)*math.sin(angle) + mirr*(y)*math.cos(angle) + xyShift[1]
sxyShift = (newX, newY)
self.write_obstacle(cur_sref.sName, sMirr, sAngle, sxyShift)
def convert_point_to_units(self,p):
"""
Convert a path set of tracks to center line path.
"""
# we can ignore the layers here
# add_wire will filter out duplicates
pt = vector(p[0],p[1])
pt=pt.scale(self.track_widths)
return pt
def convert_shape_to_tracks(self,shape,round_bigger=False):
"""
Convert a rectangular shape into track units.
"""
[ll,ur] = shape
ll = snap_to_grid(ll)
ur = snap_to_grid(ur)
# to scale coordinates to tracks
#debug.info(1,"Converting [ {0} , {1} ]".format(ll,ur))
ll=ll.scale(self.track_factor)
ur=ur.scale(self.track_factor)
ll = ll.floor() if round_bigger else ll.round()
ur = ur.ceil() if round_bigger else ur.round()
#debug.info(1,"Converted [ {0} , {1} ]".format(ll,ur))
return [ll,ur]
def convert_track_to_shape(self,track):
"""
Convert a grid point into a rectangle shape that occupies the centered
track.
"""
# to scale coordinates to tracks
# FIXME: should be the metal width no the track width?
x = track.x*self.track_width - 0.5*self.track_width
y = track.y*self.track_width - 0.5*self.track_width
# offset lowest corner object to to (-track halo,-track halo)
ll = snap_to_grid(vector(x,y))
ur = snap_to_grid(ll + vector(self.track_width,self.track_width))
return [ll,ur]
# FIXME: This should be replaced with vector.snap_to_grid at some point
def snap_to_grid(offset):
"""
Changes the coodrinate to match the grid settings
"""
grid = tech.drc["grid"]
x = offset[0]
y = offset[1]
# this gets the nearest integer value
xgrid = int(round(round((x / grid), 2), 0))
ygrid = int(round(round((y / grid), 2), 0))
xoff = xgrid * grid
yoff = ygrid * grid
return vector(xoff, yoff)