OpenRAM/compiler/modules/pgate.py

461 lines
19 KiB
Python

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2021 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
from base import design
from base import vector
import debug
import math
from bisect import bisect_left
from tech import layer, drc
from globals import OPTS
from tech import cell_properties as cell_props
if cell_props.ptx.bin_spice_models:
from tech import nmos_bins, pmos_bins
class pgate(design):
"""
This is a module that implements some shared
functions for parameterized gates.
"""
def __init__(self, name, height=None, add_wells=True):
""" Creates a generic cell """
super().__init__(name)
if height:
self.height = height
elif not height:
# By default, something simple
self.height = 14 * self.m1_pitch
self.add_wells = add_wells
if "li" in layer:
self.route_layer = "li"
else:
self.route_layer = "m1"
self.route_layer_width = getattr(self, "{}_width".format(self.route_layer))
self.route_layer_space = getattr(self, "{}_space".format(self.route_layer))
self.route_layer_pitch = getattr(self, "{}_pitch".format(self.route_layer))
# hack for enclosing input pin with npc
self.input_pin_vias = []
# This is the space from a S/D contact to the supply rail
contact_to_vdd_rail_space = 0.5 * self.route_layer_width + self.route_layer_space
# This is a poly-to-poly of a flipped cell
poly_to_poly_gate_space = self.poly_extend_active + 0.5 * self.poly_space
self.top_bottom_space = max(contact_to_vdd_rail_space,
poly_to_poly_gate_space)
self.create_netlist()
if not OPTS.netlist_only:
self.create_layout()
self.add_boundary()
self.DRC_LVS()
def create_netlist(self):
""" Pure virtual function """
debug.error("Must over-ride create_netlist.", -1)
def create_layout(self):
""" Pure virtual function """
debug.error("Must over-ride create_layout.", -1)
def connect_pin_to_rail(self, inst, pin_name, supply_name):
""" Connects a ptx pin to a supply rail. """
supply_pin = self.get_pin(supply_name)
source_pins = inst.get_pins(pin_name)
for source_pin in source_pins:
if supply_name == "gnd":
height = supply_pin.by() - source_pin.by()
elif supply_name == "vdd":
height = supply_pin.uy() - source_pin.by()
else:
debug.error("Invalid supply name.", -1)
debug.check(supply_pin.layer == source_pin.layer, "Supply pin is not on correct layer.")
self.add_rect(layer=source_pin.layer,
offset=source_pin.ll(),
height=height,
width=source_pin.width())
def route_input_gate(self, pmos_inst, nmos_inst, ypos, name, position="left", directions=None):
"""
Route the input gate to the left side of the cell for access.
Position specifies to place the contact the left, center, or
right of gate.
"""
nmos_gate_pin = nmos_inst.get_pin("G")
pmos_gate_pin = pmos_inst.get_pin("G")
# Check if the gates are aligned and give an error if they aren't!
if nmos_gate_pin.ll().x != pmos_gate_pin.ll().x:
self.gds_write("unaliged_gates.gds")
debug.check(nmos_gate_pin.ll().x == pmos_gate_pin.ll().x,
"Connecting unaligned gates not supported. See unaligned_gates.gds.")
# Pick point on the left of NMOS and up to PMOS
nmos_gate_pos = nmos_gate_pin.ul() + vector(0.5 * self.poly_width, 0)
pmos_gate_pos = vector(nmos_gate_pos.x, pmos_gate_pin.bc().y)
self.add_path("poly", [nmos_gate_pos, pmos_gate_pos])
# Add the via to the cell midpoint along the gate
left_gate_offset = vector(nmos_gate_pin.lx(), ypos)
# Center is completely symmetric.
contact_width = self.poly_contact.width
if position == "center":
contact_offset = left_gate_offset \
+ vector(0.5 * self.poly_width, 0)
elif position == "farleft":
contact_offset = left_gate_offset \
- vector(0.5 * self.poly_contact.width, 0)
elif position == "left":
contact_offset = left_gate_offset \
- vector(0.5 * contact_width - 0.5 * self.poly_width, 0)
elif position == "right":
contact_offset = left_gate_offset \
+ vector(0.5 * contact_width + 0.5 * self.poly_width, 0)
else:
debug.error("Invalid contact placement option.", -1)
via = self.add_via_stack_center(from_layer="poly",
to_layer=self.route_layer,
offset=contact_offset,
directions=directions)
self.add_layout_pin_rect_center(text=name,
layer=self.route_layer,
offset=contact_offset,
width=via.mod.second_layer_width,
height=via.mod.second_layer_height)
# This is to ensure that the contact is
# connected to the gate
mid_point = contact_offset.scale(0.5, 1) \
+ left_gate_offset.scale(0.5, 0)
self.add_rect_center(layer="poly",
offset=mid_point,
height=self.poly_contact.first_layer_width,
width=left_gate_offset.x - contact_offset.x)
return via
def extend_wells(self):
""" Extend the n/p wells to cover whole cell """
# This should match the cells in the cell library
self.nwell_yoffset = 0.48 * self.height
full_height = self.height + 0.5 * self.m1_width
# FIXME: float rounding problem
if "nwell" in layer:
# Add a rail width to extend the well to the top of the rail
nwell_max_offset = max(self.find_highest_layer_coords("nwell").y,
full_height)
nwell_position = vector(0, self.nwell_yoffset) - vector(self.well_extend_active, 0)
nwell_height = nwell_max_offset - self.nwell_yoffset
self.add_rect(layer="nwell",
offset=nwell_position,
width=self.width + 2 * self.well_extend_active,
height=nwell_height)
if "vtg" in layer:
self.add_rect(layer="vtg",
offset=nwell_position,
width=self.width + 2 * self.well_extend_active,
height=nwell_height)
# Start this half a rail width below the cell
if "pwell" in layer:
pwell_min_offset = min(self.find_lowest_layer_coords("pwell").y,
-0.5 * self.m1_width)
pwell_position = vector(-self.well_extend_active, pwell_min_offset)
pwell_height = self.nwell_yoffset - pwell_position.y
self.add_rect(layer="pwell",
offset=pwell_position,
width=self.width + 2 * self.well_extend_active,
height=pwell_height)
if "vtg" in layer:
self.add_rect(layer="vtg",
offset=pwell_position,
width=self.width + 2 * self.well_extend_active,
height=pwell_height)
if cell_props.pgate.add_implants:
self.extend_implants()
def add_nwell_contact(self, pmos, pmos_pos):
""" Add an nwell contact next to the given pmos device. """
layer_stack = self.active_stack
# To the right a spacing away from the pmos right active edge
contact_xoffset = pmos_pos.x + pmos.active_width \
+ self.active_space
# Must be at least an well enclosure of active down
# from the top of the well
# OR align the active with the top of PMOS active.
max_y_offset = self.height + 0.5 * self.m1_width
contact_yoffset = min(self.height - 0.5 * self.implant_width,
self.get_tx_insts("pmos")[0].uy()) \
- pmos.active_contact.first_layer_height \
- self.implant_enclose_active
contact_offset = vector(contact_xoffset, contact_yoffset)
# Offset by half a contact in x and y
contact_offset += vector(0.5 * pmos.active_contact.first_layer_width,
0.5 * pmos.active_contact.first_layer_height)
# This over-rides the default one with a custom direction
self.nwell_contact = self.add_via_center(layers=layer_stack,
offset=contact_offset,
implant_type="n",
well_type="n",
directions=("V", "V"))
self.add_rect_center(layer=self.route_layer,
offset=contact_offset + vector(0, 0.5 * (self.height - contact_offset.y)),
width=self.nwell_contact.mod.second_layer_width,
height=self.height - contact_offset.y)
# Now add the full active and implant for the PMOS
# active_offset = pmos_pos + vector(pmos.active_width,0)
# This might be needed if the spacing between the actives
# is not satisifed
# self.add_rect(layer="active",
# offset=active_offset,
# width=pmos.active_contact.width,
# height=pmos.active_height)
# we need to ensure implants don't overlap and are
# spaced far enough apart
# implant_spacing = self.implant_space+self.implant_enclose_active
# implant_offset = active_offset + vector(implant_spacing,0) \
# - vector(0,self.implant_enclose_active)
# implant_width = pmos.active_contact.width \
# + 2*self.implant_enclose_active
# implant_height = pmos.active_height + 2*self.implant_enclose_active
# self.add_rect(layer="nimplant",
# offset=implant_offset,
# width=implant_width,
# height=implant_height)
# Return the top of the well
def extend_implants(self):
"""
Add top-to-bottom implants for adjacency issues in s8.
"""
if self.add_wells:
rightx = None
else:
rightx = self.width
nmos_insts = self.get_tx_insts("nmos")
if len(nmos_insts) > 0:
self.add_enclosure(nmos_insts,
layer="nimplant",
extend=self.implant_enclose_active,
leftx=0,
rightx=rightx,
boty=0)
pmos_insts = self.get_tx_insts("pmos")
if len(pmos_insts) > 0:
self.add_enclosure(pmos_insts,
layer="pimplant",
extend=self.implant_enclose_active,
leftx=0,
rightx=rightx,
topy=self.height)
self.add_rect(layer="pimplant",
offset=vector(0, self.height - 0.5 * self.implant_width),
width=self.width,
height=self.implant_width)
self.add_rect(layer="nimplant",
offset=vector(0, -0.5 * self.implant_width),
width=self.width,
height=self.implant_width)
# try:
# ntap_insts = [self.nwell_contact]
# self.add_enclosure(ntap_insts,
# layer="nimplant",
# extend=self.implant_enclose_active,
# rightx=self.width,
# topy=self.height)
# except AttributeError:
# pass
# try:
# ptap_insts = [self.pwell_contact]
# self.add_enclosure(ptap_insts,
# layer="pimplant",
# extend=self.implant_enclose_active,
# rightx=self.width,
# boty=0)
# except AttributeError:
# pass
def add_pwell_contact(self, nmos, nmos_pos):
""" Add an pwell contact next to the given nmos device. """
layer_stack = self.active_stack
# To the right a spacing away from the nmos right active edge
contact_xoffset = nmos_pos.x + nmos.active_width \
+ self.active_space
# Allow an nimplant below it under the rail
contact_yoffset = max(0.5 * self.implant_width + self.implant_enclose_active,
self.get_tx_insts("nmos")[0].by())
contact_offset = vector(contact_xoffset, contact_yoffset)
# Offset by half a contact
contact_offset += vector(0.5 * nmos.active_contact.first_layer_width,
0.5 * nmos.active_contact.first_layer_height)
self.pwell_contact= self.add_via_center(layers=layer_stack,
offset=contact_offset,
implant_type="p",
well_type="p",
directions=("V", "V"))
self.add_rect_center(layer=self.route_layer,
offset=contact_offset.scale(1, 0.5),
width=self.pwell_contact.mod.second_layer_width,
height=contact_offset.y)
# Now add the full active and implant for the NMOS
# active_offset = nmos_pos + vector(nmos.active_width,0)
# This might be needed if the spacing between the actives
# is not satisifed
# self.add_rect(layer="active",
# offset=active_offset,
# width=nmos.active_contact.width,
# height=nmos.active_height)
# implant_spacing = self.implant_space+self.implant_enclose_active
# implant_offset = active_offset + vector(implant_spacing,0) \
# - vector(0,self.implant_enclose_active)
# implant_width = nmos.active_contact.width \
# + 2*self.implant_enclose_active
# implant_height = nmos.active_height + 2*self.implant_enclose_active
# self.add_rect(layer="pimplant",
# offset=implant_offset,
# width=implant_width,
# height=implant_height)
def route_supply_rails(self):
""" Add vdd/gnd rails to the top and bottom. """
self.add_layout_pin_rect_center(text="gnd",
layer=self.route_layer,
offset=vector(0.5 * self.width, 0),
width=self.width)
self.add_layout_pin_rect_center(text="vdd",
layer=self.route_layer,
offset=vector(0.5 * self.width, self.height),
width=self.width)
def determine_width(self):
""" Determine the width based on the well contacts (assumed to be on the right side) """
# It was already set or is left as default (minimum)
# Width is determined by well contact and spacing and allowing a supply via between each cell
if self.add_wells:
width = max(self.nwell_contact.rx(), self.pwell_contact.rx()) + self.m1_space + 0.5 * self.m1_via.width
# Height is an input parameter, so it is not recomputed.
else:
max_active_xoffset = self.find_highest_layer_coords("active").x
max_route_xoffset = self.find_highest_layer_coords(self.route_layer).x + 0.5 * self.m1_space
width = max(max_active_xoffset, max_route_xoffset)
self.width = width
@staticmethod
def best_bin(tx_type, target_width):
"""
Determine the width transistor that meets the accuracy requirement and is larger than target_width.
"""
# Find all of the relavent scaled bins and multiples
scaled_bins = pgate.scaled_bins(tx_type, target_width)
for (scaled_width, multiple) in scaled_bins:
if abs(target_width - scaled_width) / target_width <= 1 - OPTS.accuracy_requirement:
break
else:
debug.error("failed to bin tx size {}, try reducing accuracy requirement".format(target_width), 1)
debug.info(2, "binning {0} tx, target: {4}, found {1} x {2} = {3}".format(tx_type,
multiple,
scaled_width / multiple,
scaled_width,
target_width))
return(scaled_width / multiple, multiple)
@staticmethod
def scaled_bins(tx_type, target_width):
"""
Determine a set of widths and multiples that could be close to the right size
sorted by the fewest number of fingers.
"""
if tx_type == "nmos":
bins = nmos_bins[drc("minwidth_poly")]
elif tx_type == "pmos":
bins = pmos_bins[drc("minwidth_poly")]
else:
debug.error("invalid tx type")
# Prune out bins that are too big, except for one bigger
bins = bins[0:bisect_left(bins, target_width) + 1]
# Determine multiple of target width for each bin
if len(bins) == 1:
scaled_bins = [(bins[0], math.ceil(target_width / bins[0]))]
else:
scaled_bins = []
# Add the biggest size as 1x multiple
scaled_bins.append((bins[-1], 1))
# Compute discrete multiple of other sizes
for width in reversed(bins[:-1]):
multiple = math.ceil(target_width / width)
scaled_bins.append((multiple * width, multiple))
return(scaled_bins)
@staticmethod
def nearest_bin(tx_type, target_width):
"""
Determine the nearest width to the given target_width
while assuming a single multiple.
"""
if tx_type == "nmos":
bins = nmos_bins[drc("minwidth_poly")]
elif tx_type == "pmos":
bins = pmos_bins[drc("minwidth_poly")]
else:
debug.error("invalid tx type")
# Find the next larger bin
bin_loc = bisect_left(bins, target_width)
if bin_loc < len(bins):
return bins[bin_loc]
else:
return bins[-1]
@staticmethod
def bin_accuracy(ideal_width, width):
return 1 - abs((ideal_width - width) / ideal_width)