OpenRAM/compiler/base/hierarchy_layout.py

1218 lines
50 KiB
Python

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import itertools
import collections
import geometry
import gdsMill
import debug
from tech import drc, GDS
from tech import layer as techlayer
import os
from globals import OPTS
from vector import vector
from pin_layout import pin_layout
import lef
class layout():
"""
Class consisting of a set of objs and instances for a module
This provides a set of useful generic types for hierarchy
management. If a module is a custom designed cell, it will read from
the GDS and spice files and perform LVS/DRC. If it is dynamically
generated, it should implement a constructor to create the
layout/netlist and perform LVS/DRC.
"""
def __init__(self, name):
self.name = name
self.width = None
self.height = None
self.boundary = None
self.insts = [] # Holds module/cell layout instances
self.objs = [] # Holds all other objects (labels, geometries, etc)
self.pin_map = {} # Holds name->pin_layout map for all pins
self.visited = [] # List of modules we have already visited
self.is_library_cell = False # Flag for library cells
self.gds_read()
############################################################
# GDS layout
############################################################
def offset_all_coordinates(self):
""" This function is called after everything is placed to
shift the origin in the lowest left corner """
offset = self.find_lowest_coords()
self.translate_all(offset)
return offset
def get_gate_offset(self, x_offset, height, inv_num):
"""Gets the base offset and y orientation of stacked rows of gates
assuming a minwidth metal1 vdd/gnd rail. Input is which gate
in the stack from 0..n
"""
if (inv_num % 2 == 0):
base_offset=vector(x_offset, inv_num * height)
y_dir = 1
else:
# we lose a rail after every 2 gates
base_offset=vector(x_offset, (inv_num+1) * height - (inv_num%2)*drc["minwidth_metal1"])
y_dir = -1
return (base_offset,y_dir)
def find_lowest_coords(self):
"""Finds the lowest set of 2d cartesian coordinates within
this layout"""
if len(self.objs)>0:
lowestx1 = min(obj.lx() for obj in self.objs if obj.name!="label")
lowesty1 = min(obj.by() for obj in self.objs if obj.name!="label")
else:
lowestx1=lowesty1=None
if len(self.insts)>0:
lowestx2 = min(inst.lx() for inst in self.insts)
lowesty2 = min(inst.by() for inst in self.insts)
else:
lowestx2=lowesty2=None
if lowestx1==None and lowestx2==None:
return None
elif lowestx1==None:
return vector(lowestx2,lowesty2)
elif lowestx2==None:
return vector(lowestx1,lowesty1)
else:
return vector(min(lowestx1, lowestx2), min(lowesty1, lowesty2))
def find_highest_coords(self):
"""Finds the highest set of 2d cartesian coordinates within
this layout"""
if len(self.objs)>0:
highestx1 = max(obj.rx() for obj in self.objs if obj.name!="label")
highesty1 = max(obj.uy() for obj in self.objs if obj.name!="label")
else:
highestx1=highesty1=None
if len(self.insts)>0:
highestx2 = max(inst.rx() for inst in self.insts)
highesty2 = max(inst.uy() for inst in self.insts)
else:
highestx2=highesty2=None
if highestx1==None and highestx2==None:
return None
elif highestx1==None:
return vector(highestx2,highesty2)
elif highestx2==None:
return vector(highestx1,highesty1)
else:
return vector(max(highestx1, highestx2), max(highesty1, highesty2))
def translate_all(self, offset):
"""
Translates all objects, instances, and pins by the given (x,y) offset
"""
for obj in self.objs:
obj.offset = vector(obj.offset - offset)
for inst in self.insts:
inst.offset = vector(inst.offset - offset)
# The instances have a precomputed boundary that we need to update.
if inst.__class__.__name__ == "instance":
inst.compute_boundary(inst.offset)
for pin_name in self.pin_map.keys():
# All the pins are absolute coordinates that need to be updated.
pin_list = self.pin_map[pin_name]
for pin in pin_list:
pin.rect = [pin.ll() - offset, pin.ur() - offset]
def add_inst(self, name, mod, offset=[0,0], mirror="R0",rotate=0):
"""Adds an instance of a mod to this module"""
self.insts.append(geometry.instance(name, mod, offset, mirror, rotate))
debug.info(3, "adding instance {}".format(self.insts[-1]))
# This is commented out for runtime reasons
#debug.info(4, "instance list: " + ",".join(x.name for x in self.insts))
return self.insts[-1]
def get_inst(self, name):
"""Retrieve an instance by name"""
for inst in self.insts:
if inst.name == name:
return inst
return None
def add_rect(self, layer, offset, width=None, height=None):
"""
Adds a rectangle on a given layer,offset with width and height
"""
if not width:
width=drc["minwidth_{}".format(layer)]
if not height:
height=drc["minwidth_{}".format(layer)]
# negative layers indicate "unused" layers in a given technology
lpp = techlayer[layer]
if lpp[0] >= 0:
self.objs.append(geometry.rectangle(lpp, offset, width, height))
return self.objs[-1]
return None
def add_rect_center(self, layer, offset, width=None, height=None):
"""
Adds a rectangle on a given layer at the center point with width and height
"""
if not width:
width=drc["minwidth_{}".format(layer)]
if not height:
height=drc["minwidth_{}".format(layer)]
# negative layers indicate "unused" layers in a given technology
lpp = techlayer[layer]
corrected_offset = offset - vector(0.5*width,0.5*height)
if lpp[0] >= 0:
self.objs.append(geometry.rectangle(lpp, corrected_offset, width, height))
return self.objs[-1]
return None
def add_segment_center(self, layer, start, end):
"""
Add a min-width rectanglular segment using center line on the start to end point
"""
minwidth_layer = drc["minwidth_{}".format(layer)]
if start.x!=end.x and start.y!=end.y:
debug.error("Nonrectilinear center rect!",-1)
elif start.x!=end.x:
offset = vector(0,0.5*minwidth_layer)
return self.add_rect(layer,start-offset,end.x-start.x,minwidth_layer)
else:
offset = vector(0.5*minwidth_layer,0)
return self.add_rect(layer,start-offset,minwidth_layer,end.y-start.y)
def get_pin(self, text):
"""
Return the pin or list of pins
"""
try:
if len(self.pin_map[text])>1:
debug.error("Should use a pin iterator since more than one pin {}".format(text),-1)
# If we have one pin, return it and not the list.
# Otherwise, should use get_pins()
any_pin = next(iter(self.pin_map[text]))
return any_pin
except Exception as e:
#print e
self.gds_write("missing_pin.gds")
debug.error("No pin found with name {0} on {1}. Saved as missing_pin.gds.".format(text,self.name),-1)
def get_pins(self, text):
"""
Return a pin list (instead of a single pin)
"""
if text in self.pin_map.keys():
return self.pin_map[text]
else:
return set()
def get_pin_names(self):
"""
Return a pin list of all pins
"""
return self.pin_map.keys()
def copy_layout_pin(self, instance, pin_name, new_name=""):
"""
Create a copied version of the layout pin at the current level.
You can optionally rename the pin to a new name.
"""
pins=instance.get_pins(pin_name)
debug.check(len(pins)>0,"Could not find pin {}".format(pin_name))
for pin in pins:
if new_name=="":
new_name = pin.name
self.add_layout_pin(new_name, pin.layer, pin.ll(), pin.width(), pin.height())
def copy_layout_pins(self, instance, prefix=""):
"""
Create a copied version of the layout pin at the current level.
You can optionally rename the pin to a new name.
"""
for pin_name in self.pin_map.keys():
self.copy_layout_pin(instance, pin_name, prefix+pin_name)
def add_layout_pin_segment_center(self, text, layer, start, end):
"""
Creates a path like pin with center-line convention
"""
debug.check(start.x==end.x or start.y==end.y,"Cannot have a non-manhatten layout pin.")
minwidth_layer = drc["minwidth_{}".format(layer)]
# one of these will be zero
width = max(start.x,end.x) - min(start.x,end.x)
height = max(start.y,end.y) - min(start.y,end.y)
ll_offset = vector(min(start.x,end.x),min(start.y,end.y))
# Shift it down 1/2 a width in the 0 dimension
if height==0:
ll_offset -= vector(0,0.5*minwidth_layer)
if width==0:
ll_offset -= vector(0.5*minwidth_layer,0)
# This makes sure it is long enough, but also it is not 0 width!
height = max(minwidth_layer,height)
width = max(minwidth_layer,width)
return self.add_layout_pin(text, layer, ll_offset, width, height)
def add_layout_pin_rect_center(self, text, layer, offset, width=None, height=None):
""" Creates a path like pin with center-line convention """
if not width:
width=drc["minwidth_{0}".format(layer)]
if not height:
height=drc["minwidth_{0}".format(layer)]
ll_offset = offset - vector(0.5*width,0.5*height)
return self.add_layout_pin(text, layer, ll_offset, width, height)
def remove_layout_pin(self, text):
"""
Delete a labeled pin (or all pins of the same name)
"""
self.pin_map[text]=set()
def add_layout_pin(self, text, layer, offset, width=None, height=None):
"""
Create a labeled pin
"""
if not width:
width=drc["minwidth_{0}".format(layer)]
if not height:
height=drc["minwidth_{0}".format(layer)]
new_pin = pin_layout(text, [offset,offset+vector(width,height)], layer)
try:
# Check if there's a duplicate!
# and if so, silently ignore it.
# Rounding errors may result in some duplicates.
if new_pin not in self.pin_map[text]:
self.pin_map[text].add(new_pin)
except KeyError:
self.pin_map[text] = set()
self.pin_map[text].add(new_pin)
return new_pin
def add_label_pin(self, text, layer, offset, width=None, height=None):
"""
Create a labeled pin WITHOUT the pin data structure. This is not an
actual pin but a named net so that we can add a correspondence point
in LVS.
"""
if not width:
width=drc["minwidth_{0}".format(layer)]
if not height:
height=drc["minwidth_{0}".format(layer)]
self.add_rect(layer=layer,
offset=offset,
width=width,
height=height)
self.add_label(text=text,
layer=layer,
offset=offset+vector(0.5*width,0.5*height))
def add_label(self, text, layer, offset=[0,0],zoom=-1):
"""Adds a text label on the given layer,offset, and zoom level"""
# negative layers indicate "unused" layers in a given technology
debug.info(5,"add label " + str(text) + " " + layer + " " + str(offset))
lpp = techlayer[layer]
if lpp[0] >= 0:
self.objs.append(geometry.label(text, lpp, offset, zoom))
return self.objs[-1]
return None
def add_path(self, layer, coordinates, width=None):
"""Connects a routing path on given layer,coordinates,width."""
debug.info(4,"add path " + str(layer) + " " + str(coordinates))
import wire_path
# NOTE: (UNTESTED) add_path(...) is currently not used
# negative layers indicate "unused" layers in a given technology
#lpp = techlayer[layer]
#if lpp[0] >= 0:
# self.objs.append(geometry.path(lpp, coordinates, width))
wire_path.wire_path(obj=self,
layer=layer,
position_list=coordinates,
width=width)
def add_route(self, layers, coordinates, layer_widths):
"""Connects a routing path on given layer,coordinates,width. The
layers are the (horizontal, via, vertical). add_wire assumes
preferred direction routing whereas this includes layers in
the coordinates.
"""
import route
debug.info(4,"add route " + str(layers) + " " + str(coordinates))
# add an instance of our path that breaks down into rectangles and contacts
route.route(obj=self,
layer_stack=layers,
path=coordinates,
layer_widths=layer_widths)
def add_wire(self, layers, coordinates):
"""Connects a routing path on given layer,coordinates,width.
The layers are the (horizontal, via, vertical). """
import wire
# add an instance of our path that breaks down into rectangles and contacts
wire.wire(obj=self,
layer_stack=layers,
position_list=coordinates)
def get_preferred_direction(self, layer):
""" Return the preferred routing directions """
if layer in ["metal1", "metal3", "metal5"]:
return "H"
elif layer in ["active", "poly", "metal2", "metal4"]:
return "V"
else:
return "N"
def add_via(self, layers, offset, size=[1,1], directions=None, implant_type=None, well_type=None):
""" Add a three layer via structure. """
if directions==None:
directions = (self.get_preferred_direction(layers[0]), self.get_preferred_direction(layers[2]))
from sram_factory import factory
via = factory.create(module_type="contact",
layer_stack=layers,
dimensions=size,
directions=directions,
implant_type=implant_type,
well_type=well_type)
self.add_mod(via)
inst=self.add_inst(name=via.name,
mod=via,
offset=offset)
# We don't model the logical connectivity of wires/paths
self.connect_inst([])
return inst
def add_via_center(self, layers, offset, directions=None, size=[1,1], implant_type=None, well_type=None):
""" Add a three layer via structure by the center coordinate accounting for mirroring and rotation. """
if directions==None:
directions = (self.get_preferred_direction(layers[0]), self.get_preferred_direction(layers[2]))
from sram_factory import factory
via = factory.create(module_type="contact",
layer_stack=layers,
dimensions=size,
directions=directions,
implant_type=implant_type,
well_type=well_type)
height = via.height
width = via.width
corrected_offset = offset + vector(-0.5*width,-0.5*height)
self.add_mod(via)
inst=self.add_inst(name=via.name,
mod=via,
offset=corrected_offset)
# We don't model the logical connectivity of wires/paths
self.connect_inst([])
return inst
def add_ptx(self, offset, mirror="R0", rotate=0, width=1, mults=1, tx_type="nmos"):
"""Adds a ptx module to the design."""
import ptx
mos = ptx.ptx(width=width,
mults=mults,
tx_type=tx_type)
self.add_mod(mos)
inst=self.add_inst(name=mos.name,
mod=mos,
offset=offset,
mirror=mirror,
rotate=rotate)
return inst
def gds_read(self):
"""Reads a GDSII file in the library and checks if it exists
Otherwise, start a new layout for dynamic generation."""
# This must be done for netlist only mode too
if os.path.isfile(self.gds_file):
self.is_library_cell=True
if OPTS.netlist_only:
self.gds = None
return
# open the gds file if it exists or else create a blank layout
if os.path.isfile(self.gds_file):
debug.info(3, "opening {}".format(self.gds_file))
self.gds = gdsMill.VlsiLayout(units=GDS["unit"])
reader = gdsMill.Gds2reader(self.gds)
reader.loadFromFile(self.gds_file)
else:
debug.info(3, "Creating layout structure {}".format(self.name))
self.gds = gdsMill.VlsiLayout(name=self.name, units=GDS["unit"])
def print_gds(self, gds_file=None):
"""Print the gds file (not the vlsi class) to the terminal """
if gds_file == None:
gds_file = self.gds_file
debug.info(4, "Printing {}".format(gds_file))
arrayCellLayout = gdsMill.VlsiLayout(units=GDS["unit"])
reader = gdsMill.Gds2reader(arrayCellLayout, debugToTerminal=1)
reader.loadFromFile(gds_file)
def clear_visited(self):
""" Recursively clear the visited flag """
self.visited = []
def gds_write_file(self, gds_layout):
"""Recursive GDS write function"""
# Visited means that we already prepared self.gds for this subtree
if self.name in self.visited:
return
for i in self.insts:
i.gds_write_file(gds_layout)
for i in self.objs:
i.gds_write_file(gds_layout)
for pin_name in self.pin_map.keys():
for pin in self.pin_map[pin_name]:
pin.gds_write_file(gds_layout)
# If it's not a premade cell
# and we didn't add our own boundary,
# we should add a boundary just for DRC in some technologies
if not self.is_library_cell and not self.boundary:
# If there is a boundary layer, and we didn't create one, add one.
if "stdc" in techlayer.keys():
boundary_layer = "stdc"
elif "boundary" in techlayer.keys():
boundary_layer = "boundary"
else:
boundary_layer = None
if boundary_layer:
boundary = [self.find_lowest_coords(), self.find_highest_coords()]
height = boundary[1][1] - boundary[0][1]
width = boundary[1][0] - boundary[0][0]
(layer_number, layer_purpose) = techlayer[boundary_layer]
gds_layout.addBox(layerNumber=layer_number,
purposeNumber=layer_purpose,
offsetInMicrons=boundary[0],
width=width,
height=height,
center=False)
debug.info(0, "Adding {0} boundary {1}".format(self.name, boundary))
self.visited.append(self.name)
def gds_write(self, gds_name):
"""Write the entire gds of the object to the file."""
debug.info(3, "Writing to {}".format(gds_name))
# If we already wrote a GDS, we need to reset and traverse it again in
# case we made changes.
if not self.is_library_cell and self.visited:
debug.info(3, "Creating layout structure {}".format(self.name))
self.gds = gdsMill.VlsiLayout(name=self.name, units=GDS["unit"])
writer = gdsMill.Gds2writer(self.gds)
# MRG: 3/2/18 We don't want to clear the visited flag since
# this would result in duplicates of all instances being placed in self.gds
# which may have been previously processed!
# MRG: 10/4/18 We need to clear if we make changes and write a second GDS!
self.clear_visited()
# recursively create all the remaining objects
self.gds_write_file(self.gds)
# populates the xyTree data structure for gds
# self.gds.prepareForWrite()
writer.writeToFile(gds_name)
debug.info(3, "Done writing to {}".format(gds_name))
def get_boundary(self):
""" Return the lower-left and upper-right coordinates of boundary """
# This assumes nothing spans outside of the width and height!
return [vector(0,0), vector(self.width, self.height)]
#return [self.find_lowest_coords(), self.find_highest_coords()]
def get_blockages(self, layer, top_level=False):
"""
Write all of the obstacles in the current (and children) modules to the lef file
Do not write the pins since they aren't obstructions.
"""
if type(layer)==str:
lpp = techlayer[layer]
else:
lpp = layer
blockages = []
for i in self.objs:
blockages += i.get_blockages(lpp)
for i in self.insts:
blockages += i.get_blockages(lpp)
# Must add pin blockages to non-top cells
if not top_level:
blockages += self.get_pin_blockages(lpp)
return blockages
def get_pin_blockages(self, lpp):
""" Return the pin shapes as blockages for non-top-level blocks. """
# FIXME: We don't have a body contact in ptx, so just ignore it for now
import copy
pin_names = copy.deepcopy(self.pins)
if self.name.startswith("pmos") or self.name.startswith("nmos"):
pin_names.remove("B")
blockages = []
for pin_name in pin_names:
pin_list = self.get_pins(pin_name)
for pin in pin_list:
if pin.same_lpp(pin.lpp, lpp):
blockages += [pin.rect]
return blockages
def create_horizontal_pin_bus(self, layer, pitch, offset, names, length):
""" Create a horizontal bus of pins. """
return self.create_bus(layer,
pitch,
offset,
names,
length,
vertical=False,
make_pins=True)
def create_vertical_pin_bus(self, layer, pitch, offset, names, length):
""" Create a horizontal bus of pins. """
return self.create_bus(layer,
pitch,
offset,
names,
length,
vertical=True,
make_pins=True)
def create_vertical_bus(self, layer, pitch, offset, names, length):
""" Create a horizontal bus. """
return self.create_bus(layer,
pitch,
offset,
names,
length,
vertical=True,
make_pins=False)
def create_horizontal_bus(self, layer, pitch, offset, names, length):
""" Create a horizontal bus. """
return self.create_bus(layer,
pitch,
offset,
names,
length,
vertical=False,
make_pins=False)
def create_bus(self, layer, pitch, offset, names, length, vertical, make_pins):
"""
Create a horizontal or vertical bus. It can be either just rectangles, or actual
layout pins. It returns an map of line center line positions indexed by name.
The other coordinate is a 0 since the bus provides a range.
TODO: combine with channel router.
"""
# half minwidth so we can return the center line offsets
half_minwidth = 0.5*drc["minwidth_{}".format(layer)]
line_positions = {}
if vertical:
for i in range(len(names)):
line_offset = offset + vector(i*pitch,0)
if make_pins:
self.add_layout_pin(text=names[i],
layer=layer,
offset=line_offset,
height=length)
else:
self.add_rect(layer=layer,
offset=line_offset,
height=length)
# Make this the center of the rail
line_positions[names[i]]=line_offset+vector(half_minwidth,0.5*length)
else:
for i in range(len(names)):
line_offset = offset + vector(0,i*pitch + half_minwidth)
if make_pins:
self.add_layout_pin(text=names[i],
layer=layer,
offset=line_offset,
width=length)
else:
self.add_rect(layer=layer,
offset=line_offset,
width=length)
# Make this the center of the rail
line_positions[names[i]]=line_offset+vector(0.5*length,half_minwidth)
return line_positions
def connect_horizontal_bus(self, mapping, inst, bus_offsets,
layer_stack=("metal1","via1","metal2")):
""" Horizontal version of connect_bus. """
self.connect_bus(mapping, inst, bus_offsets, layer_stack, True)
def connect_vertical_bus(self, mapping, inst, bus_offsets,
layer_stack=("metal1","via1","metal2")):
""" Vertical version of connect_bus. """
self.connect_bus(mapping, inst, bus_offsets, layer_stack, False)
def connect_bus(self, mapping, inst, bus_offsets, layer_stack, horizontal):
"""
Connect a mapping of pin -> name for a bus. This could be
replaced with a channel router in the future.
NOTE: This has only really been tested with point-to-point connections (not multiple pins on a net).
"""
(horizontal_layer, via_layer, vertical_layer)=layer_stack
if horizontal:
route_layer = vertical_layer
else:
route_layer = horizontal_layer
for (pin_name, bus_name) in mapping:
pin = inst.get_pin(pin_name)
pin_pos = pin.center()
bus_pos = bus_offsets[bus_name]
if horizontal:
# up/down then left/right
mid_pos = vector(pin_pos.x, bus_pos.y)
else:
# left/right then up/down
mid_pos = vector(bus_pos.x, pin_pos.y)
self.add_wire(layer_stack,[bus_pos, mid_pos, pin_pos])
# Connect to the pin on the instances with a via if it is
# not on the right layer
if pin.layer != route_layer:
self.add_via_center(layers=layer_stack,
offset=pin_pos)
# FIXME: output pins tend to not be rotate, but supply pins are. Make consistent?
# We only need a via if they happened to align perfectly
# so the add_wire didn't add a via
if (horizontal and bus_pos.y == pin_pos.y) or (not horizontal and bus_pos.x == pin_pos.x):
self.add_via_center(layers=layer_stack,
offset=bus_pos,
rotate=90)
def get_layer_pitch(self, layer):
""" Return the track pitch on a given layer """
if layer=="metal1":
return (self.m1_pitch,self.m1_pitch-self.m1_space,self.m1_space)
elif layer=="metal2":
return (self.m2_pitch,self.m2_pitch-self.m2_space,self.m2_space)
elif layer=="metal3":
return (self.m3_pitch,self.m3_pitch-self.m3_space,self.m3_space)
elif layer=="metal4":
from tech import layer as tech_layer
if "metal4" in tech_layer:
return (self.m3_pitch,self.m3_pitch-self.m4_space,self.m4_space)
else:
return (self.m3_pitch,self.m3_pitch-self.m3_space,self.m3_space)
else:
debug.error("Cannot find layer pitch.")
def add_horizontal_trunk_route(self,
pins,
trunk_offset,
layer_stack,
pitch):
"""
Create a trunk route for all pins with the trunk located at the given y offset.
"""
max_x = max([pin.center().x for pin in pins])
min_x = min([pin.center().x for pin in pins])
# if we are less than a pitch, just create a non-preferred layer jog
if max_x-min_x <= pitch:
half_layer_width = 0.5*drc["minwidth_{0}".format(self.vertical_layer)]
# Add the horizontal trunk on the vertical layer!
self.add_path(self.vertical_layer,[vector(min_x-half_layer_width,trunk_offset.y), vector(max_x+half_layer_width,trunk_offset.y)])
# Route each pin to the trunk
for pin in pins:
# No bend needed here
mid = vector(pin.center().x, trunk_offset.y)
self.add_path(self.vertical_layer, [pin.center(), mid])
else:
# Add the horizontal trunk
self.add_path(self.horizontal_layer,[vector(min_x,trunk_offset.y), vector(max_x,trunk_offset.y)])
trunk_mid = vector(0.5*(max_x+min_x),trunk_offset.y)
# Route each pin to the trunk
for pin in pins:
mid = vector(pin.center().x, trunk_offset.y)
self.add_path(self.vertical_layer, [pin.center(), mid])
self.add_via_center(layers=layer_stack,
offset=mid)
def add_vertical_trunk_route(self,
pins,
trunk_offset,
layer_stack,
pitch):
"""
Create a trunk route for all pins with the trunk located at the given x offset.
"""
max_y = max([pin.center().y for pin in pins])
min_y = min([pin.center().y for pin in pins])
# if we are less than a pitch, just create a non-preferred layer jog
if max_y-min_y <= pitch:
half_layer_width = 0.5*drc["minwidth_{0}".format(self.horizontal_layer)]
# Add the vertical trunk on the horizontal layer!
self.add_path(self.horizontal_layer,[vector(trunk_offset.x,min_y-half_layer_width), vector(trunk_offset.x,max_y+half_layer_width)])
# Route each pin to the trunk
for pin in pins:
# No bend needed here
mid = vector(trunk_offset.x, pin.center().y)
self.add_path(self.horizontal_layer, [pin.center(), mid])
else:
# Add the vertical trunk
self.add_path(self.vertical_layer,[vector(trunk_offset.x,min_y), vector(trunk_offset.x,max_y)])
trunk_mid = vector(trunk_offset.x,0.5*(max_y+min_y),)
# Route each pin to the trunk
for pin in pins:
mid = vector(trunk_offset.x, pin.center().y)
self.add_path(self.horizontal_layer, [pin.center(), mid])
self.add_via_center(layers=layer_stack,
offset=mid)
def create_channel_route(self, netlist,
offset,
layer_stack=("metal1", "via1", "metal2"),
vertical=False):
"""
The net list is a list of the nets. Each net is a list of pins
to be connected. Offset is the lower-left of where the
routing channel will start. This does NOT try to minimize the
number of tracks -- instead, it picks an order to avoid the
vertical conflicts between pins.
"""
def remove_net_from_graph(pin, g):
"""
Remove the pin from the graph and all conflicts
"""
g.pop(pin,None)
# Remove the pin from all conflicts
# FIXME: This is O(n^2), so maybe optimize it.
for other_pin,conflicts in g.items():
if pin in conflicts:
conflicts.remove(pin)
g[other_pin]=conflicts
return g
def vcg_nets_overlap(net1, net2, vertical, pitch):
"""
Check all the pin pairs on two nets and return a pin
overlap if any pin overlaps
"""
for pin1 in net1:
for pin2 in net2:
if vcg_pin_overlap(pin1, pin2, vertical, pitch):
return True
return False
def vcg_pin_overlap(pin1, pin2, vertical, pitch):
""" Check for vertical or horizontal overlap of the two pins """
# FIXME: If the pins are not in a row, this may break.
# However, a top pin shouldn't overlap another top pin, for example, so the
# extra comparison *shouldn't* matter.
# Pin 1 must be in the "BOTTOM" set
x_overlap = pin1.by() < pin2.by() and abs(pin1.center().x-pin2.center().x)<pitch
# Pin 1 must be in the "LEFT" set
y_overlap = pin1.lx() < pin2.lx() and abs(pin1.center().y-pin2.center().y)<pitch
overlaps = (not vertical and x_overlap) or (vertical and y_overlap)
return overlaps
if self.get_preferred_direction(layer_stack[0])=="V":
self.vertical_layer = layer_stack[0]
self.horizontal_layer = layer_stack[2]
else:
self.vertical_layer = layer_stack[2]
self.horizontal_layer = layer_stack[0]
(self.vertical_pitch,self.vertical_width,self.vertical_space) = self.get_layer_pitch(self.vertical_layer)
(self.horizontal_pitch,self.horizontal_width,self.horizontal_space) = self.get_layer_pitch(self.horizontal_layer)
# FIXME: Must extend this to a horizontal conflict graph too if we want to minimize the
# number of tracks!
#hcg = {}
# Initialize the vertical conflict graph (vcg) and make a list of all pins
vcg = collections.OrderedDict()
# Create names for the nets for the graphs
nets = collections.OrderedDict()
index = 0
#print(netlist)
for pin_list in netlist:
net_name = "n{}".format(index)
index += 1
nets[net_name] = pin_list
# Find the vertical pin conflicts
# FIXME: O(n^2) but who cares for now
for net_name1 in nets:
if net_name1 not in vcg.keys():
vcg[net_name1]=[]
for net_name2 in nets:
if net_name2 not in vcg.keys():
vcg[net_name2]=[]
# Skip yourself
if net_name1 == net_name2:
continue
if vertical and vcg_nets_overlap(nets[net_name1], nets[net_name2], vertical, self.vertical_pitch):
vcg[net_name2].append(net_name1)
elif not vertical and vcg_nets_overlap(nets[net_name1], nets[net_name2], vertical, self.horizontal_pitch):
vcg[net_name2].append(net_name1)
# list of routes to do
while vcg:
#from pprint import pformat
#print("VCG:\n",pformat(vcg))
# get a route from conflict graph with empty fanout set
net_name=None
for net_name,conflicts in vcg.items():
if len(conflicts)==0:
vcg=remove_net_from_graph(net_name,vcg)
break
else:
# FIXME: We don't support cyclic VCGs right now.
debug.error("Cyclic VCG in channel router.",-1)
# These are the pins we'll have to connect
pin_list = nets[net_name]
#print("Routing:",net_name,[x.name for x in pin_list])
# Remove the net from other constriants in the VCG
vcg=remove_net_from_graph(net_name, vcg)
# Add the trunk routes from the bottom up for horizontal or the left to right for vertical
if vertical:
self.add_vertical_trunk_route(pin_list, offset, layer_stack, self.vertical_pitch)
offset += vector(self.vertical_pitch,0)
else:
self.add_horizontal_trunk_route(pin_list, offset, layer_stack, self.horizontal_pitch)
offset += vector(0,self.horizontal_pitch)
def create_vertical_channel_route(self, netlist, offset,
layer_stack=("metal1", "via1", "metal2")):
"""
Wrapper to create a vertical channel route
"""
self.create_channel_route(netlist, offset, layer_stack, vertical=True)
def create_horizontal_channel_route(self, netlist, offset,
layer_stack=("metal1", "via1", "metal2")):
"""
Wrapper to create a horizontal channel route
"""
self.create_channel_route(netlist, offset, layer_stack, vertical=False)
def add_boundary(self, ll=vector(0,0), ur=None):
""" Add boundary for debugging dimensions """
if "stdc" in techlayer.keys():
boundary_layer = "stdc"
else:
boundary_layer = "boundary"
if ur == None:
self.boundary = self.add_rect(layer=boundary_layer,
offset=ll,
height=self.height,
width=self.width)
else:
self.boundary = self.add_rect(layer=boundary_layer,
offset=ll,
height=ur.y-ll.y,
width=ur.x-ll.x)
def add_enclosure(self, insts, layer="nwell"):
""" Add a layer that surrounds the given instances. Useful
for creating wells, for example. Doesn't check for minimum widths or
spacings."""
xmin=insts[0].lx()
ymin=insts[0].by()
xmax=insts[0].rx()
ymax=insts[0].uy()
for inst in insts:
xmin = min(xmin, inst.lx())
ymin = min(ymin, inst.by())
xmax = max(xmax, inst.rx())
ymax = max(ymax, inst.uy())
self.add_rect(layer=layer,
offset=vector(xmin,ymin),
width=xmax-xmin,
height=ymax-ymin)
def copy_power_pins(self, inst, name):
"""
This will copy a power pin if it is on M3. If it is on M1, it will add a power via too.
"""
pins=inst.get_pins(name)
for pin in pins:
if pin.layer=="metal3":
self.add_layout_pin(name, pin.layer, pin.ll(), pin.width(), pin.height())
elif pin.layer=="metal1":
self.add_power_pin(name, pin.center())
else:
debug.warning("{0} pins of {1} should be on metal3 or metal1 for supply router.".format(name,inst.name))
def add_power_pin(self, name, loc, vertical=False, start_layer="metal1"):
"""
Add a single power pin from M3 down to M1 at the given center location.
The starting layer is specified to determine which vias are needed.
"""
if vertical:
direction=("V","V")
else:
direction=("H","H")
if start_layer=="metal1":
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=loc,
directions=direction)
if start_layer=="metal1" or start_layer=="metal2":
via=self.add_via_center(layers=("metal2", "via2", "metal3"),
offset=loc,
directions=direction)
if start_layer=="metal3":
self.add_layout_pin_rect_center(text=name,
layer="metal3",
offset=loc)
else:
self.add_layout_pin_rect_center(text=name,
layer="metal3",
offset=loc,
width=via.width,
height=via.height)
def add_power_ring(self, bbox):
"""
Create vdd and gnd power rings around an area of the bounding box argument. Must
have a supply_rail_width and supply_rail_pitch defined as a member variable.
Defines local variables of the left/right/top/bottom vdd/gnd center offsets
for use in other modules..
"""
[ll, ur] = bbox
supply_rail_spacing = self.supply_rail_pitch - self.supply_rail_width
height = (ur.y-ll.y) + 3 * self.supply_rail_pitch - supply_rail_spacing
width = (ur.x-ll.x) + 3 * self.supply_rail_pitch - supply_rail_spacing
# LEFT vertical rails
offset = ll + vector(-2*self.supply_rail_pitch, -2*self.supply_rail_pitch)
left_gnd_pin=self.add_layout_pin(text="gnd",
layer="metal2",
offset=offset,
width=self.supply_rail_width,
height=height)
offset = ll + vector(-1*self.supply_rail_pitch, -1*self.supply_rail_pitch)
left_vdd_pin=self.add_layout_pin(text="vdd",
layer="metal2",
offset=offset,
width=self.supply_rail_width,
height=height)
# RIGHT vertical rails
offset = vector(ur.x,ll.y) + vector(0,-2*self.supply_rail_pitch)
right_gnd_pin = self.add_layout_pin(text="gnd",
layer="metal2",
offset=offset,
width=self.supply_rail_width,
height=height)
offset = vector(ur.x,ll.y) + vector(self.supply_rail_pitch,-1*self.supply_rail_pitch)
right_vdd_pin=self.add_layout_pin(text="vdd",
layer="metal2",
offset=offset,
width=self.supply_rail_width,
height=height)
# BOTTOM horizontal rails
offset = ll + vector(-2*self.supply_rail_pitch, -2*self.supply_rail_pitch)
bottom_gnd_pin=self.add_layout_pin(text="gnd",
layer="metal1",
offset=offset,
width=width,
height=self.supply_rail_width)
offset = ll + vector(-1*self.supply_rail_pitch, -1*self.supply_rail_pitch)
bottom_vdd_pin=self.add_layout_pin(text="vdd",
layer="metal1",
offset=offset,
width=width,
height=self.supply_rail_width)
# TOP horizontal rails
offset = vector(ll.x, ur.y) + vector(-2*self.supply_rail_pitch,0)
top_gnd_pin=self.add_layout_pin(text="gnd",
layer="metal1",
offset=offset,
width=width,
height=self.supply_rail_width)
offset = vector(ll.x, ur.y) + vector(-1*self.supply_rail_pitch, self.supply_rail_pitch)
top_vdd_pin=self.add_layout_pin(text="vdd",
layer="metal1",
offset=offset,
width=width,
height=self.supply_rail_width)
# Remember these for connecting things in the design
self.left_gnd_x_center = left_gnd_pin.cx()
self.left_vdd_x_center = left_vdd_pin.cx()
self.right_gnd_x_center = right_gnd_pin.cx()
self.right_vdd_x_center = right_vdd_pin.cx()
self.bottom_gnd_y_center = bottom_gnd_pin.cy()
self.bottom_vdd_y_center = bottom_vdd_pin.cy()
self.top_gnd_y_center = top_gnd_pin.cy()
self.top_vdd_y_center = top_vdd_pin.cy()
# Find the number of vias for this pitch
self.supply_vias = 1
from sram_factory import factory
while True:
c=factory.create(module_type="contact",
layer_stack=("metal1","via1","metal2"),
dimensions=(self.supply_vias, self.supply_vias))
if c.second_layer_width < self.supply_rail_width and c.second_layer_height < self.supply_rail_width:
self.supply_vias += 1
else:
self.supply_vias -= 1
break
via_points = [vector(self.left_gnd_x_center, self.bottom_gnd_y_center),
vector(self.left_gnd_x_center, self.top_gnd_y_center),
vector(self.right_gnd_x_center, self.bottom_gnd_y_center),
vector(self.right_gnd_x_center, self.top_gnd_y_center),
vector(self.left_vdd_x_center, self.bottom_vdd_y_center),
vector(self.left_vdd_x_center, self.top_vdd_y_center),
vector(self.right_vdd_x_center, self.bottom_vdd_y_center),
vector(self.right_vdd_x_center, self.top_vdd_y_center)]
for pt in via_points:
self.add_via_center(layers=("metal1", "via1", "metal2"),
offset=pt,
size = (self.supply_vias, self.supply_vias))
def pdf_write(self, pdf_name):
# NOTE: Currently does not work (Needs further research)
#self.pdf_name = self.name + ".pdf"
debug.info(0, "Writing to {}".format(pdf_name))
pdf = gdsMill.pdfLayout(self.gds)
return
pdf.layerColors[self.gds.layerNumbersInUse[0]] = "#219E1C"
pdf.layerColors[self.gds.layerNumbersInUse[1]] = "#271C9E"
pdf.layerColors[self.gds.layerNumbersInUse[2]] = "#CC54C8"
pdf.layerColors[self.gds.layerNumbersInUse[3]] = "#E9C514"
pdf.layerColors[self.gds.layerNumbersInUse[4]] = "#856F00"
pdf.layerColors[self.gds.layerNumbersInUse[5]] = "#BD1444"
pdf.layerColors[self.gds.layerNumbersInUse[6]] = "#FD1444"
pdf.layerColors[self.gds.layerNumbersInUse[7]] = "#FD1414"
pdf.setScale(500)
pdf.drawLayout()
pdf.writeToFile(pdf_name)
def print_attr(self):
"""Prints a list of attributes for the current layout object"""
debug.info(0,
"|==============================================================================|")
debug.info(0,
"|========= LIST OF OBJECTS (Rects) FOR: " + self.name)
debug.info(0,
"|==============================================================================|")
for obj in self.objs:
debug.info(0, "layer={0} : offset={1} : size={2}".format(obj.layerNumber,
obj.offset,
obj.size))
debug.info(0,
"|==============================================================================|")
debug.info(0,
"|========= LIST OF INSTANCES FOR: " + self.name)
debug.info(0,
"|==============================================================================|")
for inst in self.insts:
debug.info(0, "name={0} : mod={1} : offset={2}".format(inst.name,
inst.mod.name,
inst.offset))