OpenRAM/compiler/base/pin_layout.py

655 lines
20 KiB
Python

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2023 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import math
from openram import debug
from openram.tech import GDS, drc
from openram.tech import layer, layer_indices
from .vector import vector
class pin_layout:
"""
A class to represent a rectangular design pin. It is limited to a
single shape.
"""
def __init__(self, name, rect, layer_name_pp):
self.name = name
# repack the rect as a vector, just in case
if type(rect[0]) == vector:
self._rect = rect
else:
self._rect = [vector(rect[0]), vector(rect[1])]
# snap the rect to the grid
self._rect = [x.snap_to_grid() for x in self.rect]
debug.check(self.width() > 0, "Zero width pin.")
debug.check(self.height() > 0, "Zero height pin.")
# These are the valid pin layers
valid_layers = {x: layer[x] for x in layer_indices.keys()}
# if it's a string, use the name
if type(layer_name_pp) == str:
self._layer = layer_name_pp
# else it is required to be a lpp
else:
for (layer_name, lpp) in valid_layers.items():
if not lpp:
continue
if self.same_lpp(layer_name_pp, lpp):
self._layer = layer_name
break
else:
try:
from openram.tech import layer_override
from openram.tech import layer_override_name
if layer_override[name]:
self.lpp = layer_override[name]
self.layer = "pwellp"
self._recompute_hash()
return
except:
debug.error("Layer {} is not a valid routing layer in the tech file.".format(layer_name_pp), -1)
self.lpp = layer[self.layer]
self._recompute_hash()
@property
def layer(self):
return self._layer
@layer.setter
def layer(self, l):
self._layer = l
self._recompute_hash()
@property
def rect(self):
return self._rect
@rect.setter
def rect(self, r):
self._rect = r
self._recompute_hash()
def _recompute_hash(self):
""" Recompute the hash for our hash cache """
self._hash = hash(repr(self))
def __str__(self):
""" override print function output """
return "({} layer={} ll={} ur={})".format(self.name,
self.layer,
self.rect[0],
self.rect[1])
def __repr__(self):
"""
override repr function output (don't include
name since pin shapes could have same shape but diff name e.g. blockage vs A)
"""
return "(layer={} ll={} ur={})".format(self.layer,
self.rect[0],
self.rect[1])
def __hash__(self):
"""
Implement the hash function for sets etc. We only return a cached
value, that is updated when either 'rect' or 'layer' are changed. This
is a major speedup, if pin_layout is used as a key for dicts.
"""
return self._hash
def __lt__(self, other):
""" Provide a function for ordering items by the ll point """
(ll, ur) = self.rect
(oll, our) = other.rect
if ll.x < oll.x and ll.y < oll.y:
return True
return False
def __eq__(self, other):
""" Check if these are the same pins for duplicate checks """
if isinstance(other, self.__class__):
return (self.lpp == other.lpp and self.rect == other.rect)
else:
return False
def bbox(self, pin_list):
"""
Given a list of layout pins, create a bounding box layout.
"""
(ll, ur) = self.rect
min_x = ll.x
max_x = ur.x
min_y = ll.y
max_y = ur.y
for pin in pin_list:
min_x = min(min_x, pin.ll().x)
max_x = max(max_x, pin.ur().x)
min_y = min(min_y, pin.ll().y)
max_y = max(max_y, pin.ur().y)
self.rect = [vector(min_x, min_y), vector(max_x, max_y)]
def fix_minarea(self):
"""
Try to fix minimum area rule.
"""
min_area = drc("{}_minarea".format(self.layer))
pass
def inflate(self, spacing=None, multiple=0.5):
"""
Inflate the rectangle by the spacing (or other rule)
and return the new rectangle.
"""
if not spacing:
spacing = multiple*drc("{0}_to_{0}".format(self.layer))
(ll, ur) = self.rect
spacing = vector(spacing, spacing)
newll = ll - spacing
newur = ur + spacing
return (newll, newur)
def inflated_pin(self, spacing=None, multiple=0.5):
"""
Inflate the rectangle by the spacing (or other rule)
and return the new rectangle.
"""
inflated_area = self.inflate(spacing, multiple)
return pin_layout(self.name, inflated_area, self.layer)
def intersection(self, other):
""" Check if a shape overlaps with a rectangle """
if not self.overlaps(other):
return None
(ll, ur) = self.rect
(oll, our) = other.rect
min_x = max(ll.x, oll.x)
max_x = min(ur.x, our.x)
min_y = max(ll.y, oll.y)
max_y = min(ur.y, our.y)
if max_x - min_x == 0 or max_y - min_y == 0:
return None
return pin_layout("", [vector(min_x, min_y), vector(max_x, max_y)], self.layer)
def xoverlaps(self, other):
""" Check if shape has x overlap """
(ll, ur) = self.rect
(oll, our) = other.rect
x_overlaps = False
# check if self is within other x range
if (ll.x >= oll.x and ll.x <= our.x) or (ur.x >= oll.x and ur.x <= our.x):
x_overlaps = True
# check if other is within self x range
if (oll.x >= ll.x and oll.x <= ur.x) or (our.x >= ll.x and our.x <= ur.x):
x_overlaps = True
return x_overlaps
def yoverlaps(self, other):
""" Check if shape has x overlap """
(ll, ur) = self.rect
(oll, our) = other.rect
y_overlaps = False
# check if self is within other y range
if (ll.y >= oll.y and ll.y <= our.y) or (ur.y >= oll.y and ur.y <= our.y):
y_overlaps = True
# check if other is within self y range
if (oll.y >= ll.y and oll.y <= ur.y) or (our.y >= ll.y and our.y <= ur.y):
y_overlaps = True
return y_overlaps
def xcontains(self, other):
""" Check if shape contains the x overlap """
(ll, ur) = self.rect
(oll, our) = other.rect
return (oll.x >= ll.x and our.x <= ur.x)
def ycontains(self, other):
""" Check if shape contains the y overlap """
(ll, ur) = self.rect
(oll, our) = other.rect
return (oll.y >= ll.y and our.y <= ur.y)
def contains(self, other):
""" Check if a shape contains another rectangle """
# If it is the same shape entirely, it is contained!
if self == other:
return True
# Can only overlap on the same layer
if not self.same_lpp(self.lpp, other.lpp):
return False
if not self.xcontains(other):
return False
if not self.ycontains(other):
return False
return True
def contained_by_any(self, shape_list):
""" Checks if shape is contained by any in the list """
for shape in shape_list:
if shape.contains(self):
return True
return False
def overlaps(self, other):
""" Check if a shape overlaps with a rectangle """
# Can only overlap on the same layer
if not self.same_lpp(self.lpp, other.lpp):
return False
x_overlaps = self.xoverlaps(other)
y_overlaps = self.yoverlaps(other)
return x_overlaps and y_overlaps
def area(self):
""" Return the area. """
return self.height()*self.width()
def height(self):
""" Return height. Abs is for pre-normalized value."""
return abs(self.rect[1].y-self.rect[0].y)
def width(self):
""" Return width. Abs is for pre-normalized value."""
return abs(self.rect[1].x-self.rect[0].x)
def normalize(self):
""" Re-find the LL and UR points after a transform """
(first, second) = self.rect
ll = vector(min(first[0], second[0]), min(first[1], second[1]))
ur = vector(max(first[0], second[0]), max(first[1], second[1]))
self.rect=[ll, ur]
def transform(self, offset, mirror, rotate):
"""
Transform with offset, mirror and rotation
to get the absolute pin location.
We must then re-find the ll and ur.
The master is the cell instance.
"""
(ll, ur) = self.rect
if mirror == "MX":
ll = ll.scale(1, -1)
ur = ur.scale(1, -1)
elif mirror == "MY":
ll = ll.scale(-1, 1)
ur = ur.scale(-1, 1)
elif mirror == "XY":
ll = ll.scale(-1, -1)
ur = ur.scale(-1, -1)
if rotate == 90:
ll = ll.rotate_scale(-1, 1)
ur = ur.rotate_scale(-1, 1)
elif rotate == 180:
ll = ll.scale(-1, -1)
ur = ur.scale(-1, -1)
elif rotate == 270:
ll = ll.rotate_scale(1, -1)
ur = ur.rotate_scale(1, -1)
self.rect = [offset + ll, offset + ur]
self.normalize()
def center(self):
return vector(0.5*(self.rect[0].x+self.rect[1].x),
0.5*(self.rect[0].y+self.rect[1].y))
def cx(self):
""" Center x """
return 0.5*(self.rect[0].x+self.rect[1].x)
def cy(self):
""" Center y """
return 0.5*(self.rect[0].y+self.rect[1].y)
# The four possible corners
def ll(self):
""" Lower left point """
return self.rect[0]
def ul(self):
""" Upper left point """
return vector(self.rect[0].x, self.rect[1].y)
def lr(self):
""" Lower right point """
return vector(self.rect[1].x, self.rect[0].y)
def ur(self):
""" Upper right point """
return self.rect[1]
# The possible y edge values
def uy(self):
""" Upper y value """
return self.rect[1].y
def by(self):
""" Bottom y value """
return self.rect[0].y
# The possible x edge values
def lx(self):
""" Left x value """
return self.rect[0].x
def rx(self):
""" Right x value """
return self.rect[1].x
# The edge centers
def rc(self):
""" Right center point """
return vector(self.rect[1].x,
0.5*(self.rect[0].y+self.rect[1].y))
def lc(self):
""" Left center point """
return vector(self.rect[0].x,
0.5*(self.rect[0].y+self.rect[1].y))
def uc(self):
""" Upper center point """
return vector(0.5*(self.rect[0].x+self.rect[1].x),
self.rect[1].y)
def bc(self):
""" Bottom center point """
return vector(0.5*(self.rect[0].x+self.rect[1].x),
self.rect[0].y)
def gds_write_file(self, newLayout):
"""Writes the pin shape and label to GDS"""
debug.info(4, "writing pin (" + str(self.layer) + "):"
+ str(self.width()) + "x"
+ str(self.height()) + " @ " + str(self.ll()))
# Try to use the pin layer if it exists, otherwise
# use the regular layer
try:
(pin_layer_num, pin_purpose) = layer[self.layer + "p"]
except KeyError:
(pin_layer_num, pin_purpose) = layer[self.layer]
(layer_num, purpose) = layer[self.layer]
# Try to use a global pin purpose if it exists,
# otherwise, use the regular purpose
try:
from openram.tech import pin_purpose as global_pin_purpose
pin_purpose = global_pin_purpose
except ImportError:
pass
try:
from openram.tech import label_purpose
try:
from openram.tech import layer_override_purpose
if pin_layer_num in layer_override_purpose:
layer_num = layer_override_purpose[pin_layer_num][0]
label_purpose = layer_override_purpose[pin_layer_num][1]
except:
pass
except ImportError:
label_purpose = purpose
newLayout.addBox(layerNumber=layer_num,
purposeNumber=purpose,
offsetInMicrons=self.ll(),
width=self.width(),
height=self.height(),
center=False)
# Draw a second pin shape too if it is different
if not self.same_lpp((pin_layer_num, pin_purpose), (layer_num, purpose)):
newLayout.addBox(layerNumber=pin_layer_num,
purposeNumber=pin_purpose,
offsetInMicrons=self.ll(),
width=self.width(),
height=self.height(),
center=False)
# Add the text in the middle of the pin.
# This fixes some pin label offsetting when GDS gets
# imported into Magic.
try:
zoom = GDS["zoom"]
except KeyError:
zoom = None
newLayout.addText(text=self.name,
layerNumber=layer_num,
purposeNumber=label_purpose,
magnification=zoom,
offsetInMicrons=self.center())
def compute_overlap(self, other):
""" Calculate the rectangular overlap of two rectangles. """
(r1_ll, r1_ur) = self.rect
(r2_ll, r2_ur) = other.rect
# ov_ur = vector(min(r1_ur.x,r2_ur.x),min(r1_ur.y,r2_ur.y))
# ov_ll = vector(max(r1_ll.x,r2_ll.x),max(r1_ll.y,r2_ll.y))
dy = min(r1_ur.y, r2_ur.y) - max(r1_ll.y, r2_ll.y)
dx = min(r1_ur.x, r2_ur.x) - max(r1_ll.x, r2_ll.x)
if dx >= 0 and dy >= 0:
return [dx, dy]
else:
return [0, 0]
def distance(self, other):
"""
Calculate the distance to another pin layout.
"""
(r1_ll, r1_ur) = self.rect
(r2_ll, r2_ur) = other.rect
def dist(x1, y1, x2, y2):
return math.sqrt((x2-x1)**2 + (y2-y1)**2)
left = r2_ur.x < r1_ll.x
right = r1_ur.x < r2_ll.x
bottom = r2_ur.y < r1_ll.y
top = r1_ur.y < r2_ll.y
if top and left:
return dist(r1_ll.x, r1_ur.y, r2_ur.x, r2_ll.y)
elif left and bottom:
return dist(r1_ll.x, r1_ll.y, r2_ur.x, r2_ur.y)
elif bottom and right:
return dist(r1_ur.x, r1_ll.y, r2_ll.x, r2_ur.y)
elif right and top:
return dist(r1_ur.x, r1_ur.y, r2_ll.x, r2_ll.y)
elif left:
return r1_ll.x - r2_ur.x
elif right:
return r2_ll.x - r1_ur.x
elif bottom:
return r1_ll.y - r2_ur.y
elif top:
return r2_ll.y - r1_ur.y
else:
# rectangles intersect
return 0
def overlap_length(self, other):
"""
Calculate the intersection segment and determine its length
"""
if self.contains(other):
return math.inf
elif other.contains(self):
return math.inf
else:
intersections = set(self.compute_overlap_segment(other))
# This is the common case where two pairs of edges overlap
# at two points, so just find the distance between those two points
if len(intersections) == 2:
(p1, p2) = intersections
return math.sqrt(pow(p1[0]-p2[0], 2) + pow(p1[1]-p2[1], 2))
# If we have a rectangular overlap region
elif len(intersections) == 4:
points = intersections
ll = vector(min(p.x for p in points), min(p.y for p in points))
ur = vector(max(p.x for p in points), max(p.y for p in points))
new_shape = pin_layout("", [ll, ur], self.lpp)
return max(new_shape.height(), new_shape.width())
else:
# This is where we had a corner intersection or none
return 0
def compute_overlap_segment(self, other):
"""
Calculate the intersection segment of two rectangles
(if any)
"""
(r1_ll, r1_ur) = self.rect
(r2_ll, r2_ur) = other.rect
# The other corners besides ll and ur
r1_ul = vector(r1_ll.x, r1_ur.y)
r1_lr = vector(r1_ur.x, r1_ll.y)
r2_ul = vector(r2_ll.x, r2_ur.y)
r2_lr = vector(r2_ur.x, r2_ll.y)
from itertools import tee
def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = tee(iterable)
next(b, None)
return zip(a, b)
# R1 edges CW
r1_cw_points = [r1_ll, r1_ul, r1_ur, r1_lr, r1_ll]
r1_edges = []
for (p, q) in pairwise(r1_cw_points):
r1_edges.append([p, q])
# R2 edges CW
r2_cw_points = [r2_ll, r2_ul, r2_ur, r2_lr, r2_ll]
r2_edges = []
for (p, q) in pairwise(r2_cw_points):
r2_edges.append([p, q])
# There are 4 edges on each rectangle
# so just brute force check intersection of each
# Two pairs of them should intersect
intersections = []
for r1e in r1_edges:
for r2e in r2_edges:
i = self.segment_intersection(r1e, r2e)
if i:
intersections.append(i)
return intersections
def on_segment(self, p, q, r):
"""
Given three co-linear points, determine if q lies on segment pr
"""
if q.x <= max(p.x, r.x) and \
q.x >= min(p.x, r.x) and \
q.y <= max(p.y, r.y) and \
q.y >= min(p.y, r.y):
return True
return False
def segment_intersection(self, s1, s2):
"""
Determine the intersection point of two segments
Return the a segment if they overlap.
Return None if they don't.
"""
(a, b) = s1
(c, d) = s2
# Line AB represented as a1x + b1y = c1
a1 = b.y - a.y
b1 = a.x - b.x
c1 = a1*a.x + b1*a.y
# Line CD represented as a2x + b2y = c2
a2 = d.y - c.y
b2 = c.x - d.x
c2 = a2*c.x + b2*c.y
determinant = a1*b2 - a2*b1
if determinant != 0:
x = (b2*c1 - b1*c2)/determinant
y = (a1*c2 - a2*c1)/determinant
r = vector(x, y).snap_to_grid()
if self.on_segment(a, r, b) and self.on_segment(c, r, d):
return r
return None
def cut(self, shape):
"""
Return a set of shapes that are this shape minus the argument shape.
"""
# Make the unique coordinates in X and Y directions
x_offsets = sorted([self.lx(), self.rx(), shape.lx(), shape.rx()])
y_offsets = sorted([self.by(), self.uy(), shape.by(), shape.uy()])
new_shapes = []
# Create all of the shapes
for x1, x2 in zip(x_offsets[0:], x_offsets[1:]):
if x1==x2:
continue
for y1, y2 in zip(y_offsets[0:], y_offsets[1:]):
if y1==y2:
continue
new_shape = pin_layout("", [vector(x1, y1), vector(x2, y2)], self.lpp)
# Don't add the existing shape in if it overlaps the pin shape
if new_shape.contains(shape):
continue
# Only add non-zero shapes
if new_shape.area() > 0:
new_shapes.append(new_shape)
return new_shapes
def same_lpp(self, lpp1, lpp2):
"""
Check if the layers and purposes are the same.
Ignore if purpose is a None.
"""
if lpp1[1] == None or lpp2[1] == None:
return lpp1[0] == lpp2[0]
return lpp1[0] == lpp2[0] and lpp1[1] == lpp2[1]