OpenRAM/compiler/router/grid.py

300 lines
9.8 KiB
Python

import numpy as np
import string
from itertools import tee
import debug
from vector3d import vector3d
from cell import cell
import os
try:
import Queue as Q # ver. < 3.0
except ImportError:
import queue as Q
class grid:
"""A two layer routing map. Each cell can be blocked in the vertical
or horizontal layer.
"""
def __init__(self):
""" Create a routing map of width x height cells and 2 in the z-axis. """
# costs are relative to a unit grid
# non-preferred cost allows an off-direction jog of 1 grid
# rather than 2 vias + preferred direction (cost 5)
self.VIA_COST = 2
self.NONPREFERRED_COST = 4
self.PREFERRED_COST = 1
# list of the source/target grid coordinates
self.source = []
self.target = []
# let's leave the map sparse, cells are created on demand to reduce memory
self.map={}
# priority queue for the maze routing
self.q = Q.PriorityQueue()
def set_blocked(self,n):
self.add_map(n)
self.map[n].blocked=True
def is_blocked(self,n):
self.add_map(n)
return self.map[n].blocked
def set_source(self,n):
self.add_map(n)
self.map[n].source=True
self.source.append(n)
def set_target(self,n):
self.add_map(n)
self.map[n].target=True
self.target.append(n)
def reinit(self):
""" Reinitialize everything for a new route. """
self.reset_cells()
# clear source and target pins
self.source=[]
self.target=[]
# clear the queue
while (not self.q.empty()):
self.q.get(False)
def add_blockage_shape(self,ll,ur,z):
debug.info(3,"Adding blockage ll={0} ur={1} z={2}".format(str(ll),str(ur),z))
for x in range(int(ll[0]),int(ur[0])+1):
for y in range(int(ll[1]),int(ur[1])+1):
n = vector3d(x,y,z)
self.set_blocked(n)
def add_blockage(self,block_list):
debug.info(3,"Adding blockage list={0}".format(str(block_list)))
for n in block_list:
self.set_blocked(n)
def add_source(self,track_list):
debug.info(3,"Adding source list={0}".format(str(track_list)))
for n in track_list:
if not self.is_blocked(n):
self.set_source(n)
def add_target(self,track_list):
debug.info(3,"Adding target list={0}".format(str(track_list)))
for n in track_list:
if not self.is_blocked(n):
self.set_target(n)
def reset_cells(self):
"""
Reset the path and costs for all the grid cells.
"""
for p in self.map.values():
p.reset()
def add_path(self,path):
"""
Mark the path in the routing grid for visualization
"""
self.path=path
for p in path:
self.map[p].path=True
def route(self,detour_scale):
"""
This does the A* maze routing with preferred direction routing.
"""
# We set a cost bound of the HPWL for run-time. This can be
# over-ridden if the route fails due to pruning a feasible solution.
cost_bound = detour_scale*self.cost_to_target(self.source[0])*self.PREFERRED_COST
# Make sure the queue is empty if we run another route
while not self.q.empty():
self.q.get()
# Put the source items into the queue
self.init_queue()
cheapest_path = None
cheapest_cost = None
# Keep expanding and adding to the priority queue until we are done
while not self.q.empty():
# should we keep the path in the queue as well or just the final node?
(cost,path) = self.q.get()
debug.info(2,"Queue size: size=" + str(self.q.qsize()) + " " + str(cost))
debug.info(3,"Expanding: cost=" + str(cost) + " " + str(path))
# expand the last element
neighbors = self.expand_dirs(path)
debug.info(3,"Neighbors: " + str(neighbors))
for n in neighbors:
# node is added to the map by the expand routine
newpath = path + [n]
# check if we hit the target and are done
if self.is_target(n):
return (newpath,self.cost(newpath))
elif not self.map[n].visited:
# current path cost + predicted cost
current_cost = self.cost(newpath)
target_cost = self.cost_to_target(n)
predicted_cost = current_cost + target_cost
# only add the cost if it is less than our bound
if (predicted_cost < cost_bound):
if (self.map[n].min_cost==-1 or current_cost<self.map[n].min_cost):
self.map[n].visited=True
self.map[n].min_path = newpath
self.map[n].min_cost = predicted_cost
debug.info(3,"Enqueuing: cost=" + str(current_cost) + "+" + str(target_cost) + " " + str(newpath))
# add the cost to get to this point if we haven't reached it yet
self.q.put((predicted_cost,newpath))
debug.warning("Unable to route path. Expand the detour_scale to allow detours.")
return (None,None)
def is_target(self,point):
"""
Point is in the target set, so we are done.
"""
return point in self.target
def expand_dirs(self,path):
"""
Expand each of the four cardinal directions plus up or down
but not expanding to blocked cells. Expands in all directions
regardless of preferred directions.
"""
# expand from the last point
point = path[-1]
neighbors = []
east = point + vector3d(1,0,0)
if not self.is_blocked(east) and not east in path:
neighbors.append(east)
west= point + vector3d(-1,0,0)
if not self.is_blocked(west) and not west in path:
neighbors.append(west)
up = point + vector3d(0,0,1)
if up.z<2 and not self.is_blocked(up) and not up in path:
neighbors.append(up)
north = point + vector3d(0,1,0)
if not self.is_blocked(north) and not north in path:
neighbors.append(north)
south = point + vector3d(0,-1,0)
if not self.is_blocked(south) and not south in path:
neighbors.append(south)
down = point + vector3d(0,0,-1)
if down.z>=0 and not self.is_blocked(down) and not down in path:
neighbors.append(down)
return neighbors
def add_map(self,p):
"""
Add a point to the map if it doesn't exist.
"""
if p not in self.map.keys():
self.map[p]=cell()
def init_queue(self):
"""
Populate the queue with all the source pins with cost
to the target. Each item is a path of the grid cells.
We will use an A* search, so this cost must be pessimistic.
Cost so far will be the length of the path.
"""
debug.info(4,"Initializing queue.")
# uniquify the source (and target while we are at it)
self.source = list(set(self.source))
self.target = list(set(self.target))
for s in self.source:
cost = self.cost_to_target(s)
debug.info(4,"Init: cost=" + str(cost) + " " + str([s]))
self.q.put((cost,[s]))
def hpwl(self, src, dest):
"""
Return half perimeter wire length from point to another.
Either point can have positive or negative coordinates.
Include the via penalty if there is one.
"""
hpwl = max(abs(src.x-dest.x),abs(dest.x-src.x))
hpwl += max(abs(src.y-dest.y),abs(dest.y-src.y))
hpwl += max(abs(src.z-dest.z),abs(dest.z-src.z))
if src.x!=dest.x or src.y!=dest.y:
hpwl += self.VIA_COST
return hpwl
def cost_to_target(self,source):
"""
Find the cheapest HPWL distance to any target point ignoring
blockages for A* search.
"""
cost = self.hpwl(source,self.target[0])
for t in self.target:
cost = min(self.hpwl(source,t),cost)
return cost
def cost(self,path):
"""
The cost of the path is the length plus a penalty for the number
of vias. We assume that non-preferred direction is penalized.
"""
# Ignore the source pin layer change, FIXME?
def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = tee(iterable)
next(b, None)
return zip(a, b)
plist = pairwise(path)
cost = 0
for p0,p1 in plist:
if p0.z != p1.z: # via
cost += self.VIA_COST
elif p0.x != p1.x: # horizontal
cost += self.NONPREFERRED_COST if (p0.z == 1) else self.PREFERRED_COST
elif p0.y != p1.y: # vertical
cost += self.NONPREFERRED_COST if (p0.z == 0) else self.PREFERRED_COST
else:
debug.error("Non-changing direction!")
return cost
def get_inertia(self,p0,p1):
"""
Sets the direction based on the previous direction we came from.
"""
# direction (index) of movement
if p0.x==p1.x:
return 1
elif p0.y==p1.y:
return 0
else:
# z direction
return 2