mirror of https://github.com/VLSIDA/OpenRAM.git
831 lines
36 KiB
Python
831 lines
36 KiB
Python
# See LICENSE for licensing information.
|
|
#
|
|
# Copyright (c) 2016-2019 Regents of the University of California and The Board
|
|
# of Regents for the Oklahoma Agricultural and Mechanical College
|
|
# (acting for and on behalf of Oklahoma State University)
|
|
# All rights reserved.
|
|
#
|
|
import sys
|
|
from tech import drc, parameter
|
|
import debug
|
|
import design
|
|
import math
|
|
from math import log,sqrt,ceil
|
|
import contact
|
|
from vector import vector
|
|
from sram_factory import factory
|
|
from globals import OPTS
|
|
|
|
class multibank(design.design):
|
|
"""
|
|
Dynamically generated a single bank including bitcell array,
|
|
hierarchical_decoder, precharge, (optional column_mux and column decoder),
|
|
write driver and sense amplifiers.
|
|
This module includes the tristate and bank select logic.
|
|
"""
|
|
|
|
def __init__(self, name, word_size, num_words, words_per_row, num_banks=1):
|
|
|
|
design.design.__init__(self, name)
|
|
debug.info(2, "create sram of size {0} with {1} words".format(word_size,num_words))
|
|
|
|
self.word_size = word_size
|
|
self.num_words = num_words
|
|
self.words_per_row = words_per_row
|
|
self.num_banks = num_banks
|
|
|
|
# The local control signals are gated when we have bank select logic,
|
|
# so this prefix will be added to all of the input signals to create
|
|
# the internal gated signals.
|
|
if self.num_banks>1:
|
|
self.prefix="gated_"
|
|
else:
|
|
self.prefix=""
|
|
|
|
self.compute_sizes()
|
|
self.add_pins()
|
|
self.add_modules()
|
|
self.create_instances()
|
|
self.setup_layout_constraints()
|
|
|
|
# FIXME: Move this to the add modules function
|
|
self.add_bank_select()
|
|
|
|
self.route_layout()
|
|
|
|
|
|
# Can remove the following, but it helps for debug!
|
|
self.add_lvs_correspondence_points()
|
|
|
|
# Remember the bank center for further placement
|
|
self.bank_center=self.offset_all_coordinates().scale(-1,-1)
|
|
|
|
self.DRC_LVS()
|
|
|
|
def add_pins(self):
|
|
""" Adding pins for Bank module"""
|
|
for i in range(self.word_size):
|
|
self.add_pin("dout_{0}".format(i),"OUT")
|
|
for i in range(self.word_size):
|
|
self.add_pin("bank_din_{0}".format(i),"IN")
|
|
for i in range(self.addr_size):
|
|
self.add_pin("a_{0}".format(i),"INPUT")
|
|
|
|
# For more than one bank, we have a bank select and name
|
|
# the signals gated_*.
|
|
if self.num_banks > 1:
|
|
self.add_pin("bank_sel","INPUT")
|
|
for pin in ["s_en","w_en","tri_en_bar","tri_en",
|
|
"clk_buf_bar","clk_buf"]:
|
|
self.add_pin(pin,"INPUT")
|
|
self.add_pin("vdd","POWER")
|
|
self.add_pin("gnd","GROUND")
|
|
|
|
def route_layout(self):
|
|
""" Create routing amoung the modules """
|
|
self.route_central_bus()
|
|
self.route_precharge_to_bitcell_array()
|
|
self.route_col_mux_to_bitcell_array()
|
|
self.route_sense_amp_to_col_mux_or_bitcell_array()
|
|
#self.route_sense_amp_to_trigate()
|
|
#self.route_tri_gate_out()
|
|
self.route_sense_amp_out()
|
|
self.route_wordline_driver()
|
|
self.route_write_driver()
|
|
self.route_row_decoder()
|
|
self.route_column_address_lines()
|
|
self.route_control_lines()
|
|
self.add_control_pins()
|
|
if self.num_banks > 1:
|
|
self.route_bank_select()
|
|
|
|
self.route_supplies()
|
|
|
|
def create_instances(self):
|
|
""" Add modules. The order should not matter! """
|
|
|
|
# Above the bitcell array
|
|
self.add_bitcell_array()
|
|
self.add_precharge_array()
|
|
|
|
# Below the bitcell array
|
|
self.add_column_mux_array()
|
|
self.add_sense_amp_array()
|
|
self.add_write_driver_array()
|
|
# Not needed for single bank
|
|
#self.add_tri_gate_array()
|
|
|
|
# To the left of the bitcell array
|
|
self.add_row_decoder()
|
|
self.add_wordline_driver()
|
|
self.add_column_decoder()
|
|
|
|
|
|
|
|
def compute_sizes(self):
|
|
""" Computes the required sizes to create the bank """
|
|
|
|
self.num_cols = int(self.words_per_row*self.word_size)
|
|
self.num_rows = int(self.num_words / self.words_per_row)
|
|
|
|
self.row_addr_size = int(log(self.num_rows, 2))
|
|
self.col_addr_size = int(log(self.words_per_row, 2))
|
|
self.addr_size = self.col_addr_size + self.row_addr_size
|
|
|
|
debug.check(self.num_rows*self.num_cols==self.word_size*self.num_words,"Invalid bank sizes.")
|
|
debug.check(self.addr_size==self.col_addr_size + self.row_addr_size,"Invalid address break down.")
|
|
|
|
# Width for the vdd/gnd rails
|
|
self.supply_rail_width = 4*self.m2_width
|
|
# FIXME: This spacing should be width dependent...
|
|
self.supply_rail_pitch = self.supply_rail_width + 4*self.m2_space
|
|
|
|
# Number of control lines in the bus
|
|
self.num_control_lines = 6
|
|
# The order of the control signals on the control bus:
|
|
self.input_control_signals = ["clk_buf", "tri_en_bar", "tri_en", "clk_buf_bar", "w_en", "s_en"]
|
|
# These will be outputs of the gaters if this is multibank, if not, normal signals.
|
|
if self.num_banks > 1:
|
|
self.control_signals = ["gated_"+str for str in self.input_control_signals]
|
|
else:
|
|
self.control_signals = self.input_control_signals
|
|
# The central bus is the column address (one hot) and row address (binary)
|
|
if self.col_addr_size>0:
|
|
self.num_col_addr_lines = 2**self.col_addr_size
|
|
else:
|
|
self.num_col_addr_lines = 0
|
|
|
|
# The width of this bus is needed to place other modules (e.g. decoder)
|
|
# A width on each side too
|
|
self.central_bus_width = self.m2_pitch * self.num_control_lines + 2*self.m2_width
|
|
|
|
# A space for wells or jogging m2
|
|
self.m2_gap = max(2*drc("pwell_to_nwell"] + drc["well_enclosure_active"),
|
|
2*self.m2_pitch)
|
|
|
|
|
|
|
|
def add_modules(self):
|
|
""" Add all the modules using the class loader """
|
|
self.tri = self.mod_tri_gate()
|
|
self.bitcell = self.mod_bitcell()
|
|
|
|
self.bitcell_array = self.mod_bitcell_array(cols=self.num_cols,
|
|
rows=self.num_rows)
|
|
self.add_mod(self.bitcell_array)
|
|
|
|
self.precharge_array = self.mod_precharge_array(columns=self.num_cols)
|
|
self.add_mod(self.precharge_array)
|
|
|
|
if self.col_addr_size > 0:
|
|
self.column_mux_array = self.mod_column_mux_array(columns=self.num_cols,
|
|
word_size=self.word_size)
|
|
self.add_mod(self.column_mux_array)
|
|
|
|
|
|
self.sense_amp_array = self.mod_sense_amp_array(word_size=self.word_size,
|
|
words_per_row=self.words_per_row)
|
|
self.add_mod(self.sense_amp_array)
|
|
|
|
if self.write_size is not None:
|
|
self.write_mask_driver_array = self.mod_write_mask_driver_array(columns=self.num_cols,
|
|
word_size=self.word_size,
|
|
write_size=self.write_size)
|
|
self.add_mod(self.write_mask_driver_array)
|
|
else:
|
|
self.write_driver_array = self.mod_write_driver_array(columns=self.num_cols,
|
|
word_size=self.word_size)
|
|
self.add_mod(self.write_driver_array)
|
|
|
|
self.row_decoder = self.mod_decoder(rows=self.num_rows)
|
|
self.add_mod(self.row_decoder)
|
|
|
|
self.tri_gate_array = self.mod_tri_gate_array(columns=self.num_cols,
|
|
word_size=self.word_size)
|
|
self.add_mod(self.tri_gate_array)
|
|
|
|
self.wordline_driver = self.mod_wordline_driver(rows=self.num_rows)
|
|
self.add_mod(self.wordline_driver)
|
|
|
|
self.inv = pinv()
|
|
self.add_mod(self.inv)
|
|
|
|
if(self.num_banks > 1):
|
|
self.bank_select = self.mod_bank_select()
|
|
self.add_mod(self.bank_select)
|
|
|
|
|
|
def add_bitcell_array(self):
|
|
""" Adding Bitcell Array """
|
|
|
|
self.bitcell_array_inst=self.add_inst(name="bitcell_array",
|
|
mod=self.bitcell_array,
|
|
offset=vector(0,0))
|
|
temp = []
|
|
for i in range(self.num_cols):
|
|
temp.append("bl_{0}".format(i))
|
|
temp.append("br_{0}".format(i))
|
|
for j in range(self.num_rows):
|
|
temp.append("wl_{0}".format(j))
|
|
temp.extend(["vdd", "gnd"])
|
|
self.connect_inst(temp)
|
|
|
|
|
|
def add_precharge_array(self):
|
|
""" Adding Precharge """
|
|
|
|
# The wells must be far enough apart
|
|
# The enclosure is for the well and the spacing is to the bitcell wells
|
|
y_offset = self.bitcell_array.height + self.m2_gap
|
|
self.precharge_array_inst=self.add_inst(name="precharge_array",
|
|
mod=self.precharge_array,
|
|
offset=vector(0,y_offset))
|
|
temp = []
|
|
for i in range(self.num_cols):
|
|
temp.append("bl_{0}".format(i))
|
|
temp.append("br_{0}".format(i))
|
|
temp.extend([self.prefix+"clk_buf_bar", "vdd"])
|
|
self.connect_inst(temp)
|
|
|
|
def add_column_mux_array(self):
|
|
""" Adding Column Mux when words_per_row > 1 . """
|
|
if self.col_addr_size > 0:
|
|
self.column_mux_height = self.column_mux_array.height + self.m2_gap
|
|
else:
|
|
self.column_mux_height = 0
|
|
return
|
|
|
|
y_offset = self.column_mux_height
|
|
self.col_mux_array_inst=self.add_inst(name="column_mux_array",
|
|
mod=self.column_mux_array,
|
|
offset=vector(0,y_offset).scale(-1,-1))
|
|
temp = []
|
|
for i in range(self.num_cols):
|
|
temp.append("bl_{0}".format(i))
|
|
temp.append("br_{0}".format(i))
|
|
for k in range(self.words_per_row):
|
|
temp.append("sel_{0}".format(k))
|
|
for j in range(self.word_size):
|
|
temp.append("bl_out_{0}".format(j))
|
|
temp.append("br_out_{0}".format(j))
|
|
temp.append("gnd")
|
|
self.connect_inst(temp)
|
|
|
|
def add_sense_amp_array(self):
|
|
""" Adding Sense amp """
|
|
|
|
y_offset = self.column_mux_height + self.sense_amp_array.height + self.m2_gap
|
|
self.sense_amp_array_inst=self.add_inst(name="sense_amp_array",
|
|
mod=self.sense_amp_array,
|
|
offset=vector(0,y_offset).scale(-1,-1))
|
|
temp = []
|
|
for i in range(self.word_size):
|
|
temp.append("sa_out_{0}".format(i))
|
|
if self.words_per_row == 1:
|
|
temp.append("bl_{0}".format(i))
|
|
temp.append("br_{0}".format(i))
|
|
else:
|
|
temp.append("bl_out_{0}".format(i))
|
|
temp.append("br_out_{0}".format(i))
|
|
|
|
temp.extend([self.prefix+"s_en", "vdd", "gnd"])
|
|
self.connect_inst(temp)
|
|
|
|
def add_write_driver_array(self):
|
|
""" Adding Write Driver """
|
|
|
|
y_offset = self.sense_amp_array.height + self.column_mux_height \
|
|
+ self.m2_gap + self.write_driver_array.height
|
|
self.write_driver_array_inst=self.add_inst(name="write_driver_array",
|
|
mod=self.write_driver_array,
|
|
offset=vector(0,y_offset).scale(-1,-1))
|
|
|
|
temp = []
|
|
for i in range(self.word_size):
|
|
temp.append("bank_din_{0}".format(i))
|
|
for i in range(self.word_size):
|
|
if (self.words_per_row == 1):
|
|
temp.append("bl_{0}".format(i))
|
|
temp.append("br_{0}".format(i))
|
|
else:
|
|
temp.append("bl_out_{0}".format(i))
|
|
temp.append("br_out_{0}".format(i))
|
|
temp.extend([self.prefix+"w_en", "vdd", "gnd"])
|
|
self.connect_inst(temp)
|
|
|
|
def add_tri_gate_array(self):
|
|
""" data tri gate to drive the data bus """
|
|
y_offset = self.sense_amp_array.height+self.column_mux_height \
|
|
+ self.m2_gap + self.tri_gate_array.height
|
|
self.tri_gate_array_inst=self.add_inst(name="tri_gate_array",
|
|
mod=self.tri_gate_array,
|
|
offset=vector(0,y_offset).scale(-1,-1))
|
|
|
|
temp = []
|
|
for i in range(self.word_size):
|
|
temp.append("sa_out_{0}".format(i))
|
|
for i in range(self.word_size):
|
|
temp.append("dout_{0}".format(i))
|
|
temp.extend([self.prefix+"tri_en", self.prefix+"tri_en_bar", "vdd", "gnd"])
|
|
self.connect_inst(temp)
|
|
|
|
def add_row_decoder(self):
|
|
""" Add the hierarchical row decoder """
|
|
|
|
|
|
# The address and control bus will be in between decoder and the main memory array
|
|
# This bus will route address bits to the decoder input and column mux inputs.
|
|
# The wires are actually routed after we placed the stuff on both sides.
|
|
# The predecoder is below the x-axis and the main decoder is above the x-axis
|
|
# The address flop and decoder are aligned in the x coord.
|
|
|
|
x_offset = -(self.row_decoder.width + self.central_bus_width + self.wordline_driver.width)
|
|
self.row_decoder_inst=self.add_inst(name="row_decoder",
|
|
mod=self.row_decoder,
|
|
offset=vector(x_offset,0))
|
|
|
|
temp = []
|
|
for i in range(self.row_addr_size):
|
|
temp.append("A_{0}".format(i+self.col_addr_size))
|
|
for j in range(self.num_rows):
|
|
temp.append("dec_out_{0}".format(j))
|
|
temp.extend(["vdd", "gnd"])
|
|
self.connect_inst(temp)
|
|
|
|
def add_wordline_driver(self):
|
|
""" Wordline Driver """
|
|
|
|
# The wordline driver is placed to the right of the main decoder width.
|
|
x_offset = -(self.central_bus_width + self.wordline_driver.width) + self.m2_pitch
|
|
self.wordline_driver_inst=self.add_inst(name="wordline_driver",
|
|
mod=self.wordline_driver,
|
|
offset=vector(x_offset,0))
|
|
|
|
temp = []
|
|
for i in range(self.num_rows):
|
|
temp.append("dec_out_{0}".format(i))
|
|
for i in range(self.num_rows):
|
|
temp.append("wl_{0}".format(i))
|
|
temp.append(self.prefix+"clk_buf")
|
|
temp.append("vdd")
|
|
temp.append("gnd")
|
|
self.connect_inst(temp)
|
|
|
|
|
|
def add_column_decoder_module(self):
|
|
"""
|
|
Create a 2:4 or 3:8 column address decoder.
|
|
"""
|
|
# Place the col decoder right aligned with row decoder
|
|
x_off = -(self.central_bus_width + self.wordline_driver.width + self.col_decoder.width)
|
|
y_off = -(self.col_decoder.height + 2*drc("well_to_well"))
|
|
self.col_decoder_inst=self.add_inst(name="col_address_decoder",
|
|
mod=self.col_decoder,
|
|
offset=vector(x_off,y_off))
|
|
|
|
temp = []
|
|
for i in range(self.col_addr_size):
|
|
temp.append("A_{0}".format(i))
|
|
for j in range(self.num_col_addr_lines):
|
|
temp.append("sel_{0}".format(j))
|
|
temp.extend(["vdd", "gnd"])
|
|
self.connect_inst(temp)
|
|
|
|
def add_column_decoder(self):
|
|
"""
|
|
Create a decoder to decode column select lines. This could be an inverter/buffer for 1:2,
|
|
2:4 decoder, or 3:8 decoder.
|
|
"""
|
|
if self.col_addr_size == 0:
|
|
return
|
|
elif self.col_addr_size == 1:
|
|
self.col_decoder = pinvbuf(height=self.mod_dff.height)
|
|
self.add_mod(self.col_decoder)
|
|
elif self.col_addr_size == 2:
|
|
self.col_decoder = self.row_decoder.pre2_4
|
|
elif self.col_addr_size == 3:
|
|
self.col_decoder = self.row_decoder.pre3_8
|
|
else:
|
|
# No error checking before?
|
|
debug.error("Invalid column decoder?",-1)
|
|
|
|
self.add_column_decoder_module()
|
|
|
|
|
|
def add_bank_select(self):
|
|
""" Instantiate the bank select logic. """
|
|
|
|
if not self.num_banks > 1:
|
|
return
|
|
|
|
x_off = -(self.row_decoder.width + self.central_bus_width + self.wordline_driver.width)
|
|
if self.col_addr_size > 0:
|
|
y_off = min(self.col_decoder_inst.by(), self.col_mux_array_inst.by())
|
|
else:
|
|
y_off = self.row_decoder_inst.by()
|
|
y_off -= (self.bank_select.height + drc("well_to_well"))
|
|
self.bank_select_pos = vector(x_off,y_off)
|
|
self.bank_select_inst = self.add_inst(name="bank_select",
|
|
mod=self.bank_select,
|
|
offset=self.bank_select_pos)
|
|
|
|
temp = []
|
|
temp.extend(self.input_control_signals)
|
|
temp.append("bank_sel")
|
|
temp.extend(self.control_signals)
|
|
temp.extend(["vdd", "gnd"])
|
|
self.connect_inst(temp)
|
|
|
|
def route_supplies(self):
|
|
""" Propagate all vdd/gnd pins up to this level for all modules """
|
|
for inst in self.insts:
|
|
self.copy_power_pins(inst,"vdd")
|
|
self.copy_power_pins(inst,"gnd")
|
|
|
|
def route_bank_select(self):
|
|
""" Route the bank select logic. """
|
|
for input_name in self.input_control_signals+["bank_sel"]:
|
|
self.copy_layout_pin(self.bank_select_inst, input_name)
|
|
|
|
for gated_name in self.control_signals:
|
|
# Connect the inverter output to the central bus
|
|
out_pos = self.bank_select_inst.get_pin(gated_name).rc()
|
|
bus_pos = vector(self.bus_xoffset[gated_name], out_pos.y)
|
|
self.add_path("metal3",[out_pos, bus_pos])
|
|
self.add_via_center(layers=("metal2", "via2", "metal3"),
|
|
offset=bus_pos,
|
|
rotate=90)
|
|
self.add_via_center(layers=("metal1", "via1", "metal2"),
|
|
offset=out_pos,
|
|
rotate=90)
|
|
self.add_via_center(layers=("metal2", "via2", "metal3"),
|
|
offset=out_pos,
|
|
rotate=90)
|
|
|
|
|
|
def setup_layout_constraints(self):
|
|
""" After the modules are instantiated, find the dimensions for the
|
|
control bus, power ring, etc. """
|
|
|
|
#The minimum point is either the bottom of the address flops,
|
|
#the column decoder (if there is one) or the tristate output
|
|
#driver.
|
|
# Leave room for the output below the tri gate.
|
|
#tri_gate_min_y_offset = self.tri_gate_array_inst.by() - 3*self.m2_pitch
|
|
write_driver_min_y_offset = self.write_driver_array_inst.by() - 3*self.m2_pitch
|
|
row_decoder_min_y_offset = self.row_decoder_inst.by()
|
|
if self.col_addr_size > 0:
|
|
col_decoder_min_y_offset = self.col_decoder_inst.by()
|
|
else:
|
|
col_decoder_min_y_offset = row_decoder_min_y_offset
|
|
|
|
if self.num_banks>1:
|
|
# The control gating logic is below the decoder
|
|
# Min of the control gating logic and tri gate.
|
|
self.min_y_offset = min(col_decoder_min_y_offset - self.bank_select.height, write_driver_min_y_offset)
|
|
else:
|
|
# Just the min of the decoder logic logic and tri gate.
|
|
self.min_y_offset = min(col_decoder_min_y_offset, write_driver_min_y_offset)
|
|
|
|
# The max point is always the top of the precharge bitlines
|
|
# Add a vdd and gnd power rail above the array
|
|
self.max_y_offset = self.precharge_array_inst.uy() + 3*self.m1_width
|
|
self.max_x_offset = self.bitcell_array_inst.ur().x + 3*self.m1_width
|
|
self.min_x_offset = self.row_decoder_inst.lx()
|
|
|
|
# # Create the core bbox for the power rings
|
|
ur = vector(self.max_x_offset, self.max_y_offset)
|
|
ll = vector(self.min_x_offset, self.min_y_offset)
|
|
self.core_bbox = [ll, ur]
|
|
|
|
self.height = ur.y - ll.y
|
|
self.width = ur.x - ll.x
|
|
|
|
|
|
|
|
def route_central_bus(self):
|
|
""" Create the address, supply, and control signal central bus lines. """
|
|
|
|
# Overall central bus width. It includes all the column mux lines,
|
|
# and control lines.
|
|
# The bank is at (0,0), so this is to the left of the y-axis.
|
|
# 2 pitches on the right for vias/jogs to access the inputs
|
|
control_bus_offset = vector(-self.m2_pitch * self.num_control_lines - self.m2_width, 0)
|
|
control_bus_length = self.bitcell_array_inst.uy()
|
|
self.bus_xoffset = self.create_vertical_bus(layer="metal2",
|
|
pitch=self.m2_pitch,
|
|
offset=control_bus_offset,
|
|
names=self.control_signals,
|
|
length=control_bus_length)
|
|
|
|
|
|
|
|
def route_precharge_to_bitcell_array(self):
|
|
""" Routing of BL and BR between pre-charge and bitcell array """
|
|
|
|
for i in range(self.num_cols):
|
|
precharge_bl = self.precharge_array_inst.get_pin("bl_{}".format(i)).bc()
|
|
precharge_br = self.precharge_array_inst.get_pin("br_{}".format(i)).bc()
|
|
bitcell_bl = self.bitcell_array_inst.get_pin("bl_{}".format(i)).uc()
|
|
bitcell_br = self.bitcell_array_inst.get_pin("br_{}".format(i)).uc()
|
|
|
|
yoffset = 0.5*(precharge_bl.y+bitcell_bl.y)
|
|
self.add_path("metal2",[precharge_bl, vector(precharge_bl.x,yoffset),
|
|
vector(bitcell_bl.x,yoffset), bitcell_bl])
|
|
self.add_path("metal2",[precharge_br, vector(precharge_br.x,yoffset),
|
|
vector(bitcell_br.x,yoffset), bitcell_br])
|
|
|
|
|
|
def route_col_mux_to_bitcell_array(self):
|
|
""" Routing of BL and BR between col mux and bitcell array """
|
|
|
|
# Only do this if we have a column mux!
|
|
if self.col_addr_size==0:
|
|
return
|
|
|
|
for i in range(self.num_cols):
|
|
col_mux_bl = self.col_mux_array_inst.get_pin("bl_{}".format(i)).uc()
|
|
col_mux_br = self.col_mux_array_inst.get_pin("br_{}".format(i)).uc()
|
|
bitcell_bl = self.bitcell_array_inst.get_pin("bl_{}".format(i)).bc()
|
|
bitcell_br = self.bitcell_array_inst.get_pin("br_{}".format(i)).bc()
|
|
|
|
yoffset = 0.5*(col_mux_bl.y+bitcell_bl.y)
|
|
self.add_path("metal2",[col_mux_bl, vector(col_mux_bl.x,yoffset),
|
|
vector(bitcell_bl.x,yoffset), bitcell_bl])
|
|
self.add_path("metal2",[col_mux_br, vector(col_mux_br.x,yoffset),
|
|
vector(bitcell_br.x,yoffset), bitcell_br])
|
|
|
|
def route_sense_amp_to_col_mux_or_bitcell_array(self):
|
|
""" Routing of BL and BR between sense_amp and column mux or bitcell array """
|
|
|
|
for i in range(self.word_size):
|
|
sense_amp_bl = self.sense_amp_array_inst.get_pin("bl_{}".format(i)).uc()
|
|
sense_amp_br = self.sense_amp_array_inst.get_pin("br_{}".format(i)).uc()
|
|
|
|
if self.col_addr_size>0:
|
|
# Sense amp is connected to the col mux
|
|
connect_bl = self.col_mux_array_inst.get_pin("bl_out_{}".format(i)).bc()
|
|
connect_br = self.col_mux_array_inst.get_pin("br_out_{}".format(i)).bc()
|
|
else:
|
|
# Sense amp is directly connected to the bitcell array
|
|
connect_bl = self.bitcell_array_inst.get_pin("bl_{}".format(i)).bc()
|
|
connect_br = self.bitcell_array_inst.get_pin("br_{}".format(i)).bc()
|
|
|
|
|
|
yoffset = 0.5*(sense_amp_bl.y+connect_bl.y)
|
|
self.add_path("metal2",[sense_amp_bl, vector(sense_amp_bl.x,yoffset),
|
|
vector(connect_bl.x,yoffset), connect_bl])
|
|
self.add_path("metal2",[sense_amp_br, vector(sense_amp_br.x,yoffset),
|
|
vector(connect_br.x,yoffset), connect_br])
|
|
|
|
def route_sense_amp_to_trigate(self):
|
|
""" Routing of sense amp output to tri_gate input """
|
|
|
|
for i in range(self.word_size):
|
|
# Connection of data_out of sense amp to data_in
|
|
tri_gate_in = self.tri_gate_array_inst.get_pin("in_{}".format(i)).lc()
|
|
sa_data_out = self.sense_amp_array_inst.get_pin("data_{}".format(i)).bc()
|
|
|
|
self.add_via_center(layers=("metal2", "via2", "metal3"),
|
|
offset=tri_gate_in)
|
|
self.add_via_center(layers=("metal2", "via2", "metal3"),
|
|
offset=sa_data_out)
|
|
self.add_path("metal3",[sa_data_out,tri_gate_in])
|
|
|
|
def route_sense_amp_out(self):
|
|
""" Add pins for the sense amp output """
|
|
for i in range(self.word_size):
|
|
data_pin = self.sense_amp_array_inst.get_pin("data_{}".format(i))
|
|
self.add_layout_pin_rect_center(text="dout_{}".format(i),
|
|
layer=data_pin.layer,
|
|
offset=data_pin.center(),
|
|
height=data_pin.height(),
|
|
width=data_pin.width()),
|
|
|
|
def route_tri_gate_out(self):
|
|
""" Metal 3 routing of tri_gate output data """
|
|
for i in range(self.word_size):
|
|
data_pin = self.tri_gate_array_inst.get_pin("out_{}".format(i))
|
|
self.add_layout_pin_rect_center(text="dout_{}".format(i),
|
|
layer=data_pin.layer,
|
|
offset=data_pin.center(),
|
|
height=data_pin.height(),
|
|
width=data_pin.width()),
|
|
|
|
|
|
def route_row_decoder(self):
|
|
""" Routes the row decoder inputs and supplies """
|
|
|
|
# Create inputs for the row address lines
|
|
for i in range(self.row_addr_size):
|
|
addr_idx = i + self.col_addr_size
|
|
decoder_name = "a_{}".format(i)
|
|
addr_name = "a_{}".format(addr_idx)
|
|
self.copy_layout_pin(self.row_decoder_inst, decoder_name, addr_name)
|
|
|
|
|
|
def route_write_driver(self):
|
|
""" Connecting write driver """
|
|
|
|
for i in range(self.word_size):
|
|
data_name = "data_{}".format(i)
|
|
din_name = "bank_din_{}".format(i)
|
|
self.copy_layout_pin(self.write_driver_array_inst, data_name, din_name)
|
|
|
|
|
|
|
|
def route_wordline_driver(self):
|
|
""" Connecting Wordline driver output to Bitcell WL connection """
|
|
|
|
# we don't care about bends after connecting to the input pin, so let the path code decide.
|
|
for i in range(self.num_rows):
|
|
# The pre/post is to access the pin from "outside" the cell to avoid DRCs
|
|
decoder_out_pos = self.row_decoder_inst.get_pin("decode_{}".format(i)).rc()
|
|
driver_in_pos = self.wordline_driver_inst.get_pin("in_{}".format(i)).lc()
|
|
mid1 = decoder_out_pos.scale(0.5,1)+driver_in_pos.scale(0.5,0)
|
|
mid2 = decoder_out_pos.scale(0.5,0)+driver_in_pos.scale(0.5,1)
|
|
self.add_path("metal1", [decoder_out_pos, mid1, mid2, driver_in_pos])
|
|
|
|
# The mid guarantees we exit the input cell to the right.
|
|
driver_wl_pos = self.wordline_driver_inst.get_pin("wl_{}".format(i)).rc()
|
|
bitcell_wl_pos = self.bitcell_array_inst.get_pin("wl_{}".format(i)).lc()
|
|
mid1 = driver_wl_pos.scale(0.5,1)+bitcell_wl_pos.scale(0.5,0)
|
|
mid2 = driver_wl_pos.scale(0.5,0)+bitcell_wl_pos.scale(0.5,1)
|
|
self.add_path("metal1", [driver_wl_pos, mid1, mid2, bitcell_wl_pos])
|
|
|
|
|
|
|
|
def route_column_address_lines(self):
|
|
""" Connecting the select lines of column mux to the address bus """
|
|
if not self.col_addr_size>0:
|
|
return
|
|
|
|
|
|
|
|
if self.col_addr_size == 1:
|
|
|
|
# Connect to sel[0] and sel[1]
|
|
decode_names = ["Zb", "Z"]
|
|
|
|
# The Address LSB
|
|
self.copy_layout_pin(self.col_decoder_inst, "A", "a[0]")
|
|
|
|
elif self.col_addr_size > 1:
|
|
decode_names = []
|
|
for i in range(self.num_col_addr_lines):
|
|
decode_names.append("out_{}".format(i))
|
|
|
|
for i in range(self.col_addr_size):
|
|
decoder_name = "in_{}".format(i)
|
|
addr_name = "a_{}".format(i)
|
|
self.copy_layout_pin(self.col_decoder_inst, decoder_name, addr_name)
|
|
|
|
|
|
# This will do a quick "river route" on two layers.
|
|
# When above the top select line it will offset "inward" again to prevent conflicts.
|
|
# This could be done on a single layer, but we follow preferred direction rules for later routing.
|
|
top_y_offset = self.col_mux_array_inst.get_pin("sel_{}".format(self.num_col_addr_lines-1)).cy()
|
|
for (decode_name,i) in zip(decode_names,range(self.num_col_addr_lines)):
|
|
mux_name = "sel_{}".format(i)
|
|
mux_addr_pos = self.col_mux_array_inst.get_pin(mux_name).lc()
|
|
|
|
decode_out_pos = self.col_decoder_inst.get_pin(decode_name).center()
|
|
|
|
# To get to the edge of the decoder and one track out
|
|
delta_offset = self.col_decoder_inst.rx() - decode_out_pos.x + self.m2_pitch
|
|
if decode_out_pos.y > top_y_offset:
|
|
mid1_pos = vector(decode_out_pos.x + delta_offset + i*self.m2_pitch,decode_out_pos.y)
|
|
else:
|
|
mid1_pos = vector(decode_out_pos.x + delta_offset + (self.num_col_addr_lines-i)*self.m2_pitch,decode_out_pos.y)
|
|
mid2_pos = vector(mid1_pos.x,mux_addr_pos.y)
|
|
#self.add_wire(("metal1","via1","metal2"),[decode_out_pos, mid1_pos, mid2_pos, mux_addr_pos])
|
|
self.add_path("metal1",[decode_out_pos, mid1_pos, mid2_pos, mux_addr_pos])
|
|
|
|
|
|
|
|
|
|
|
|
def add_lvs_correspondence_points(self):
|
|
""" This adds some points for easier debugging if LVS goes wrong.
|
|
These should probably be turned off by default though, since extraction
|
|
will show these as ports in the extracted netlist.
|
|
"""
|
|
# Add the wordline names
|
|
for i in range(self.num_rows):
|
|
wl_name = "wl_{}".format(i)
|
|
wl_pin = self.bitcell_array_inst.get_pin(wl_name)
|
|
self.add_label(text=wl_name,
|
|
layer="metal1",
|
|
offset=wl_pin.center())
|
|
|
|
# Add the bitline names
|
|
for i in range(self.num_cols):
|
|
bl_name = "bl_{}".format(i)
|
|
br_name = "br_{}".format(i)
|
|
bl_pin = self.bitcell_array_inst.get_pin(bl_name)
|
|
br_pin = self.bitcell_array_inst.get_pin(br_name)
|
|
self.add_label(text=bl_name,
|
|
layer="metal2",
|
|
offset=bl_pin.center())
|
|
self.add_label(text=br_name,
|
|
layer="metal2",
|
|
offset=br_pin.center())
|
|
|
|
# # Add the data output names to the sense amp output
|
|
# for i in range(self.word_size):
|
|
# data_name = "data_{}".format(i)
|
|
# data_pin = self.sense_amp_array_inst.get_pin(data_name)
|
|
# self.add_label(text="sa_out_{}".format(i),
|
|
# layer="metal2",
|
|
# offset=data_pin.center())
|
|
|
|
# Add labels on the decoder
|
|
for i in range(self.word_size):
|
|
data_name = "dec_out_{}".format(i)
|
|
pin_name = "in_{}".format(i)
|
|
data_pin = self.wordline_driver_inst.get_pin(pin_name)
|
|
self.add_label(text=data_name,
|
|
layer="metal1",
|
|
offset=data_pin.center())
|
|
|
|
|
|
def route_control_lines(self):
|
|
""" Route the control lines of the entire bank """
|
|
|
|
# Make a list of tuples that we will connect.
|
|
# From control signal to the module pin
|
|
# Connection from the central bus to the main control block crosses
|
|
# pre-decoder and this connection is in metal3
|
|
connection = []
|
|
#connection.append((self.prefix+"tri_en_bar", self.tri_gate_array_inst.get_pin("en_bar").lc()))
|
|
#connection.append((self.prefix+"tri_en", self.tri_gate_array_inst.get_pin("en").lc()))
|
|
connection.append((self.prefix+"clk_buf_bar", self.precharge_array_inst.get_pin("en").lc()))
|
|
connection.append((self.prefix+"w_en", self.write_driver_array_inst.get_pin("en").lc()))
|
|
connection.append((self.prefix+"s_en", self.sense_amp_array_inst.get_pin("en").lc()))
|
|
|
|
for (control_signal, pin_pos) in connection:
|
|
control_pos = vector(self.bus_xoffset[control_signal].x ,pin_pos.y)
|
|
self.add_path("metal1", [control_pos, pin_pos])
|
|
self.add_via_center(layers=("metal1", "via1", "metal2"),
|
|
offset=control_pos,
|
|
rotate=90)
|
|
|
|
# clk to wordline_driver
|
|
control_signal = self.prefix+"clk_buf"
|
|
pin_pos = self.wordline_driver_inst.get_pin("en").uc()
|
|
mid_pos = pin_pos + vector(0,self.m1_pitch)
|
|
control_x_offset = self.bus_xoffset[control_signal].x
|
|
control_pos = vector(control_x_offset + self.m1_width, mid_pos.y)
|
|
self.add_wire(("metal1","via1","metal2"),[pin_pos, mid_pos, control_pos])
|
|
control_via_pos = vector(control_x_offset, mid_pos.y)
|
|
self.add_via_center(layers=("metal1", "via1", "metal2"),
|
|
offset=control_via_pos,
|
|
rotate=90)
|
|
|
|
def add_control_pins(self):
|
|
""" Add the control signal input pins """
|
|
|
|
for ctrl in self.control_signals:
|
|
# xoffsets are the center of the rail
|
|
x_offset = self.bus_xoffset[ctrl].x - 0.5*self.m2_width
|
|
if self.num_banks > 1:
|
|
# it's not an input pin if we have multiple banks
|
|
self.add_label_pin(text=ctrl,
|
|
layer="metal2",
|
|
offset=vector(x_offset, self.min_y_offset),
|
|
width=self.m2_width,
|
|
height=self.max_y_offset-self.min_y_offset)
|
|
else:
|
|
self.add_layout_pin(text=ctrl,
|
|
layer="metal2",
|
|
offset=vector(x_offset, self.min_y_offset),
|
|
width=self.m2_width,
|
|
height=self.max_y_offset-self.min_y_offset)
|
|
|
|
|
|
def connect_rail_from_right(self,inst, pin, rail):
|
|
""" Helper routine to connect an unrotated/mirrored oriented instance to the rails """
|
|
in_pin = inst.get_pin(pin).lc()
|
|
rail_pos = vector(self.rail_1_x_offsets[rail], in_pin.y)
|
|
self.add_wire(("metal3","via2","metal2"),[in_pin, rail_pos, rail_pos - vector(0,self.m2_pitch)])
|
|
# Bring it up to M2 for M2/M3 routing
|
|
self.add_via(layers=("metal1","via1","metal2"),
|
|
offset=in_pin + contact.m1m2.offset,
|
|
rotate=90)
|
|
self.add_via(layers=("metal2","via2","metal3"),
|
|
offset=in_pin + self.m2m3_via_offset,
|
|
rotate=90)
|
|
|
|
|
|
def connect_rail_from_left(self,inst, pin, rail):
|
|
""" Helper routine to connect an unrotated/mirrored oriented instance to the rails """
|
|
in_pin = inst.get_pin(pin).rc()
|
|
rail_pos = vector(self.rail_1_x_offsets[rail], in_pin.y)
|
|
self.add_wire(("metal3","via2","metal2"),[in_pin, rail_pos, rail_pos - vector(0,self.m2_pitch)])
|
|
self.add_via(layers=("metal1","via1","metal2"),
|
|
offset=in_pin + contact.m1m2.offset,
|
|
rotate=90)
|
|
self.add_via(layers=("metal2","via2","metal3"),
|
|
offset=in_pin + self.m2m3_via_offset,
|
|
rotate=90)
|