OpenRAM/compiler/modules/control_logic.py

360 lines
14 KiB
Python

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2022 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import math
from openram import debug
from openram.base import vector
from openram.sram_factory import factory
from openram import OPTS
from .control_logic_base import control_logic_base
class control_logic(control_logic_base):
"""
Dynamically generated Control logic for the total SRAM circuit.
"""
def __init__(self, num_rows, words_per_row, word_size, spare_columns=None, sram=None, port_type="rw", name=""):
""" Constructor """
super().__init__(num_rows, words_per_row, word_size, spare_columns, sram, port_type, name)
def add_pins(self):
""" Add the pins to the control logic module. """
self.add_pin_list(self.input_list + ["clk"] + self.rbl_list, "INPUT")
self.add_pin_list(self.output_list, "OUTPUT")
self.add_pin("vdd", "POWER")
self.add_pin("gnd", "GROUND")
def add_modules(self):
""" Add all the required modules """
self.dff = factory.create(module_type="dff_buf")
dff_height = self.dff.height
self.ctrl_dff_array = factory.create(module_type="dff_buf_array",
rows=self.num_control_signals,
columns=1)
self.and2 = factory.create(module_type="pand2",
size=12,
height=dff_height)
self.rbl_driver = factory.create(module_type="pbuf",
size=self.num_cols,
height=dff_height)
# clk_buf drives a flop for every address
addr_flops = math.log(self.num_words, 2) + math.log(self.words_per_row, 2)
# plus data flops and control flops
num_flops = addr_flops + self.word_size + self.num_spare_cols + self.num_control_signals
# each flop internally has a FO 5 approximately
# plus about 5 fanouts for the control logic
clock_fanout = 5 * num_flops + 5
self.clk_buf_driver = factory.create(module_type="pdriver",
fanout=clock_fanout,
height=dff_height)
# We will use the maximum since this same value is used to size the wl_en
# and the p_en_bar drivers
# max_fanout = max(self.num_rows, self.num_cols)
# wl_en drives every row in the bank
# MRG 9/3/2021: Ensure that this is two stages to prevent race conditions with the write driver
size_list = [max(int(self.num_rows / 9), 1), max(int(self.num_rows / 3), 1)]
self.wl_en_driver = factory.create(module_type="pdriver",
size_list=size_list,
height=dff_height)
# w_en drives every write driver
self.wen_and = factory.create(module_type="pand3",
size=self.word_size + 8,
height=dff_height)
# s_en drives every sense amp
self.sen_and3 = factory.create(module_type="pand3",
size=self.word_size + self.num_spare_cols,
height=dff_height)
# used to generate inverted signals with low fanout
self.inv = factory.create(module_type="pinv",
size=1,
height=dff_height)
# p_en_bar drives every column in the bitcell array
# but it is sized the same as the wl_en driver with
# prepended 3 inverter stages to guarantee it is slower and odd polarity
self.p_en_bar_driver = factory.create(module_type="pdriver",
fanout=self.num_cols,
height=dff_height)
self.nand2 = factory.create(module_type="pnand2",
height=dff_height)
debug.check(OPTS.delay_chain_stages % 2,
"Must use odd number of delay chain stages for inverting delay chain.")
self.delay_chain=factory.create(module_type="delay_chain",
fanout_list = OPTS.delay_chain_stages * [ OPTS.delay_chain_fanout_per_stage ])
def setup_signal_busses(self):
""" Setup bus names, determine the size of the busses etc """
# List of input control signals
if self.port_type == "rw":
self.input_list = ["csb", "web"]
self.rbl_list = ["rbl_bl"]
else:
self.input_list = ["csb"]
self.rbl_list = ["rbl_bl"]
if self.port_type == "rw":
self.dff_output_list = ["cs_bar", "cs", "we_bar", "we"]
else:
self.dff_output_list = ["cs_bar", "cs"]
# list of output control signals (for making a vertical bus)
if self.port_type == "rw":
self.internal_bus_list = ["rbl_bl_delay_bar", "rbl_bl_delay", "gated_clk_bar", "gated_clk_buf", "we", "we_bar", "clk_buf", "cs"]
elif self.port_type == "r":
self.internal_bus_list = ["rbl_bl_delay_bar", "rbl_bl_delay", "gated_clk_bar", "gated_clk_buf", "clk_buf", "cs_bar", "cs"]
else:
self.internal_bus_list = ["rbl_bl_delay_bar", "rbl_bl_delay", "gated_clk_bar", "gated_clk_buf", "clk_buf", "cs"]
# leave space for the bus plus one extra space
self.internal_bus_width = (len(self.internal_bus_list) + 1) * self.m2_pitch
# Outputs to the bank
if self.port_type == "rw":
self.output_list = ["s_en", "w_en"]
elif self.port_type == "r":
self.output_list = ["s_en"]
else:
self.output_list = ["w_en"]
self.output_list.append("p_en_bar")
self.output_list.append("wl_en")
self.output_list.append("clk_buf")
self.supply_list = ["vdd", "gnd"]
def create_instances(self):
""" Create all the instances """
self.create_dffs()
self.create_clk_buf_row()
self.create_gated_clk_bar_row()
self.create_gated_clk_buf_row()
self.create_wlen_row()
if (self.port_type == "rw") or (self.port_type == "w"):
self.create_rbl_delay_row()
self.create_wen_row()
if (self.port_type == "rw") or (self.port_type == "r"):
self.create_sen_row()
self.create_delay()
self.create_pen_row()
def place_logic_rows(self):
row = 0
self.place_clk_buf_row(row)
row += 1
self.place_gated_clk_bar_row(row)
row += 1
self.place_gated_clk_buf_row(row)
row += 1
if (self.port_type == "rw") or (self.port_type == "r"):
self.place_sen_row(row)
row += 1
if (self.port_type == "rw") or (self.port_type == "w"):
self.place_wen_row(row)
row += 1
self.place_pen_row(row)
row += 1
if (self.port_type == "rw") or (self.port_type == "w"):
self.place_rbl_delay_row(row)
row += 1
self.place_wlen_row(row)
self.control_center_y = self.wl_en_inst.uy() + self.m3_pitch
def route_all(self):
""" Routing between modules """
self.route_rails()
self.route_dffs()
self.route_wlen()
if (self.port_type == "rw") or (self.port_type == "w"):
self.route_rbl_delay()
self.route_wen()
if (self.port_type == "rw") or (self.port_type == "r"):
self.route_sen()
self.route_delay()
self.route_pen()
self.route_clk_buf()
self.route_gated_clk_bar()
self.route_gated_clk_buf()
self.route_supplies()
def create_delay(self):
""" Create the delay chain """
self.delay_inst=self.add_inst(name="delay_chain",
mod=self.delay_chain)
# rbl_bl_delay is asserted (1) when the bitline has been discharged
self.connect_inst(["rbl_bl", "rbl_bl_delay", "vdd", "gnd"])
def route_delay(self):
out_pos = self.delay_inst.get_pin("out").center()
# Connect to the rail level with the vdd rail
# Use gated clock since it is in every type of control logic
vdd_ypos = self.gated_clk_buf_inst.get_pin("vdd").cy() + self.m1_pitch
in_pos = vector(self.input_bus["rbl_bl_delay"].cx(), vdd_ypos)
mid1 = vector(out_pos.x, in_pos.y)
self.add_wire(self.m1_stack, [out_pos, mid1, in_pos])
self.add_via_center(layers=self.m1_stack,
offset=in_pos)
# Input from RBL goes to the delay line for futher delay
self.copy_layout_pin(self.delay_inst, "in", "rbl_bl")
def create_wlen_row(self):
# input pre_p_en, output: wl_en
self.wl_en_inst=self.add_inst(name="buf_wl_en",
mod=self.wl_en_driver)
self.connect_inst(["gated_clk_bar", "wl_en", "vdd", "gnd"])
def place_wlen_row(self, row):
x_offset = self.control_x_offset
x_offset = self.place_util(self.wl_en_inst, x_offset, row)
self.row_end_inst.append(self.wl_en_inst)
def route_wlen(self):
wlen_map = zip(["A"], ["gated_clk_bar"])
self.connect_vertical_bus(wlen_map, self.wl_en_inst, self.input_bus)
self.connect_output(self.wl_en_inst, "Z", "wl_en")
def create_pen_row(self):
self.p_en_bar_nand_inst=self.add_inst(name="nand_p_en_bar",
mod=self.nand2)
# We use the rbl_bl_delay here to ensure that the p_en is only asserted when the
# bitlines have already been discharged. Otherwise, it is a combination loop.
self.connect_inst(["gated_clk_buf", "rbl_bl_delay", "p_en_bar_unbuf", "vdd", "gnd"])
self.p_en_bar_driver_inst=self.add_inst(name="buf_p_en_bar",
mod=self.p_en_bar_driver)
self.connect_inst(["p_en_bar_unbuf", "p_en_bar", "vdd", "gnd"])
def place_pen_row(self, row):
x_offset = self.control_x_offset
x_offset = self.place_util(self.p_en_bar_nand_inst, x_offset, row)
x_offset = self.place_util(self.p_en_bar_driver_inst, x_offset, row)
self.row_end_inst.append(self.p_en_bar_driver_inst)
def route_pen(self):
in_map = zip(["A", "B"], ["gated_clk_buf", "rbl_bl_delay"])
self.connect_vertical_bus(in_map, self.p_en_bar_nand_inst, self.input_bus)
out_pin = self.p_en_bar_nand_inst.get_pin("Z")
out_pos = out_pin.center()
in_pin = self.p_en_bar_driver_inst.get_pin("A")
in_pos = in_pin.center()
mid1 = vector(in_pos.x, out_pos.y)
self.add_path(out_pin.layer, [out_pos, mid1, in_pos])
self.add_via_stack_center(from_layer=out_pin.layer,
to_layer=in_pin.layer,
offset=in_pin.center())
self.connect_output(self.p_en_bar_driver_inst, "Z", "p_en_bar")
def create_sen_row(self):
""" Create the sense enable buffer. """
if self.port_type=="rw":
input_name = "we_bar"
else:
input_name = "cs"
# GATE FOR S_EN
self.s_en_gate_inst = self.add_inst(name="buf_s_en_and",
mod=self.sen_and3)
# s_en is asserted in the second half of the cycle during a read.
# we also must wait until the bitline has been discharged enough for proper sensing
# hence we use rbl_bl_delay as well.
self.connect_inst(["rbl_bl_delay", "gated_clk_bar", input_name, "s_en", "vdd", "gnd"])
def place_sen_row(self, row):
x_offset = self.control_x_offset
x_offset = self.place_util(self.s_en_gate_inst, x_offset, row)
self.row_end_inst.append(self.s_en_gate_inst)
def route_sen(self):
if self.port_type=="rw":
input_name = "we_bar"
else:
input_name = "cs"
sen_map = zip(["A", "B", "C"], ["rbl_bl_delay", "gated_clk_bar", input_name])
self.connect_vertical_bus(sen_map, self.s_en_gate_inst, self.input_bus)
self.connect_output(self.s_en_gate_inst, "Z", "s_en")
def create_rbl_delay_row(self):
self.rbl_bl_delay_inv_inst = self.add_inst(name="rbl_bl_delay_inv",
mod=self.inv)
self.connect_inst(["rbl_bl_delay", "rbl_bl_delay_bar", "vdd", "gnd"])
def place_rbl_delay_row(self, row):
x_offset = self.control_x_offset
x_offset = self.place_util(self.rbl_bl_delay_inv_inst, x_offset, row)
self.row_end_inst.append(self.rbl_bl_delay_inv_inst)
def route_rbl_delay(self):
# Connect from delay line
# Connect to rail
self.route_output_to_bus_jogged(self.rbl_bl_delay_inv_inst, "rbl_bl_delay_bar")
rbl_map = zip(["A"], ["rbl_bl_delay"])
self.connect_vertical_bus(rbl_map, self.rbl_bl_delay_inv_inst, self.input_bus)
def create_wen_row(self):
# input: we (or cs) output: w_en
if self.port_type == "rw":
input_name = "we"
else:
# No we for write-only reports, so use cs
input_name = "cs"
# GATE THE W_EN
self.w_en_gate_inst = self.add_inst(name="w_en_and",
mod=self.wen_and)
# Only drive the writes in the second half of the clock cycle during a write operation.
self.connect_inst([input_name, "rbl_bl_delay_bar", "gated_clk_bar", "w_en", "vdd", "gnd"])
def place_wen_row(self, row):
x_offset = self.control_x_offset
x_offset = self.place_util(self.w_en_gate_inst, x_offset, row)
self.row_end_inst.append(self.w_en_gate_inst)
def route_wen(self):
if self.port_type == "rw":
input_name = "we"
else:
# No we for write-only reports, so use cs
input_name = "cs"
wen_map = zip(["A", "B", "C"], [input_name, "rbl_bl_delay_bar", "gated_clk_bar"])
self.connect_vertical_bus(wen_map, self.w_en_gate_inst, self.input_bus)
self.connect_output(self.w_en_gate_inst, "Z", "w_en")