OpenRAM/compiler/base/pin_layout.py

402 lines
12 KiB
Python

import debug
from tech import GDS, drc
from vector import vector
from tech import layer
import math
class pin_layout:
"""
A class to represent a rectangular design pin. It is limited to a
single shape.
"""
def __init__(self, name, rect, layer_name_num):
self.name = name
# repack the rect as a vector, just in case
if type(rect[0])==vector:
self.rect = rect
else:
self.rect = [vector(rect[0]),vector(rect[1])]
# snap the rect to the grid
self.rect = [x.snap_to_grid() for x in self.rect]
# if it's a layer number look up the layer name. this assumes a unique layer number.
if type(layer_name_num)==int:
self.layer = list(layer.keys())[list(layer.values()).index(layer_name_num)]
else:
self.layer=layer_name_num
self.layer_num = layer[self.layer]
def __str__(self):
""" override print function output """
return "({} layer={} ll={} ur={})".format(self.name,self.layer,self.rect[0],self.rect[1])
def __repr__(self):
"""
override repr function output (don't include
name since pin shapes could have same shape but diff name e.g. blockage vs A)
"""
return "(layer={} ll={} ur={})".format(self.layer,self.rect[0],self.rect[1])
def __hash__(self):
""" Implement the hash function for sets etc. """
return hash(repr(self))
def __lt__(self, other):
""" Provide a function for ordering items by the ll point """
(ll, ur) = self.rect
(oll, our) = other.rect
if ll.x < oll.x and ll.y < oll.y:
return True
return False
def __eq__(self, other):
""" Check if these are the same pins for duplicate checks """
if isinstance(other, self.__class__):
return (self.layer==other.layer and self.rect == other.rect)
else:
return False
def inflate(self, spacing=None):
"""
Inflate the rectangle by the spacing (or other rule)
and return the new rectangle.
"""
if not spacing:
spacing = 0.5*drc("{0}_to_{0}".format(self.layer))
(ll,ur) = self.rect
spacing = vector(spacing, spacing)
newll = ll - spacing
newur = ur + spacing
return (newll, newur)
def intersection(self, other):
""" Check if a shape overlaps with a rectangle """
(ll,ur) = self.rect
(oll,our) = other.rect
min_x = max(ll.x, oll.x)
max_x = min(ll.x, oll.x)
min_y = max(ll.y, oll.y)
max_y = min(ll.y, oll.y)
return [vector(min_x,min_y),vector(max_x,max_y)]
def xoverlaps(self, other):
""" Check if shape has x overlap """
(ll,ur) = self.rect
(oll,our) = other.rect
x_overlaps = False
# check if self is within other x range
if (ll.x >= oll.x and ll.x <= our.x) or (ur.x >= oll.x and ur.x <= our.x):
x_overlaps = True
# check if other is within self x range
if (oll.x >= ll.x and oll.x <= ur.x) or (our.x >= ll.x and our.x <= ur.x):
x_overlaps = True
return x_overlaps
def yoverlaps(self, other):
""" Check if shape has x overlap """
(ll,ur) = self.rect
(oll,our) = other.rect
y_overlaps = False
# check if self is within other y range
if (ll.y >= oll.y and ll.y <= our.y) or (ur.y >= oll.y and ur.y <= our.y):
y_overlaps = True
# check if other is within self y range
if (oll.y >= ll.y and oll.y <= ur.y) or (our.y >= ll.y and our.y <= ur.y):
y_overlaps = True
return y_overlaps
def contains(self, other):
""" Check if a shape contains another rectangle """
# Can only overlap on the same layer
if self.layer != other.layer:
return False
(ll,ur) = self.rect
(oll,our) = other.rect
if not (oll.y >= ll.y and oll.y <= ur.y):
return False
if not (oll.x >= ll.x and oll.x <= ur.x):
return False
return True
def overlaps(self, other):
""" Check if a shape overlaps with a rectangle """
# Can only overlap on the same layer
if self.layer != other.layer:
return False
x_overlaps = self.xoverlaps(other)
y_overlaps = self.yoverlaps(other)
return x_overlaps and y_overlaps
def area(self):
""" Return the area. """
return self.height()*self.width()
def height(self):
""" Return height. Abs is for pre-normalized value."""
return abs(self.rect[1].y-self.rect[0].y)
def width(self):
""" Return width. Abs is for pre-normalized value."""
return abs(self.rect[1].x-self.rect[0].x)
def normalize(self):
""" Re-find the LL and UR points after a transform """
(first,second)=self.rect
ll = vector(min(first[0],second[0]),min(first[1],second[1]))
ur = vector(max(first[0],second[0]),max(first[1],second[1]))
self.rect=[ll,ur]
def transform(self,offset,mirror,rotate):
""" Transform with offset, mirror and rotation to get the absolute pin location.
We must then re-find the ll and ur. The master is the cell instance. """
(ll,ur) = self.rect
if mirror=="MX":
ll=ll.scale(1,-1)
ur=ur.scale(1,-1)
elif mirror=="MY":
ll=ll.scale(-1,1)
ur=ur.scale(-1,1)
elif mirror=="XY":
ll=ll.scale(-1,-1)
ur=ur.scale(-1,-1)
if rotate==90:
ll=ll.rotate_scale(-1,1)
ur=ur.rotate_scale(-1,1)
elif rotate==180:
ll=ll.scale(-1,-1)
ur=ur.scale(-1,-1)
elif rotate==270:
ll=ll.rotate_scale(1,-1)
ur=ur.rotate_scale(1,-1)
self.rect=[offset+ll,offset+ur]
self.normalize()
def center(self):
return vector(0.5*(self.rect[0].x+self.rect[1].x),0.5*(self.rect[0].y+self.rect[1].y))
def cx(self):
""" Center x """
return 0.5*(self.rect[0].x+self.rect[1].x)
def cy(self):
""" Center y """
return 0.5*(self.rect[0].y+self.rect[1].y)
# The four possible corners
def ll(self):
""" Lower left point """
return self.rect[0]
def ul(self):
""" Upper left point """
return vector(self.rect[0].x,self.rect[1].y)
def lr(self):
""" Lower right point """
return vector(self.rect[1].x,self.rect[0].y)
def ur(self):
""" Upper right point """
return self.rect[1]
# The possible y edge values
def uy(self):
""" Upper y value """
return self.rect[1].y
def by(self):
""" Bottom y value """
return self.rect[0].y
# The possible x edge values
def lx(self):
""" Left x value """
return self.rect[0].x
def rx(self):
""" Right x value """
return self.rect[1].x
# The edge centers
def rc(self):
""" Right center point """
return vector(self.rect[1].x,0.5*(self.rect[0].y+self.rect[1].y))
def lc(self):
""" Left center point """
return vector(self.rect[0].x,0.5*(self.rect[0].y+self.rect[1].y))
def uc(self):
""" Upper center point """
return vector(0.5*(self.rect[0].x+self.rect[1].x),self.rect[1].y)
def bc(self):
""" Bottom center point """
return vector(0.5*(self.rect[0].x+self.rect[1].x),self.rect[0].y)
def gds_write_file(self, newLayout):
"""Writes the pin shape and label to GDS"""
debug.info(4, "writing pin (" + str(self.layer) + "):"
+ str(self.width()) + "x" + str(self.height()) + " @ " + str(self.ll()))
newLayout.addBox(layerNumber=layer[self.layer],
purposeNumber=0,
offsetInMicrons=self.ll(),
width=self.width(),
height=self.height(),
center=False)
# Add the tet in the middle of the pin.
# This fixes some pin label offsetting when GDS gets imported into Magic.
newLayout.addText(text=self.name,
layerNumber=layer[self.layer],
purposeNumber=0,
offsetInMicrons=self.center(),
magnification=GDS["zoom"],
rotate=None)
def compute_overlap(self, other):
""" Calculate the rectangular overlap of two rectangles. """
(r1_ll,r1_ur) = self.rect
(r2_ll,r2_ur) = other.rect
#ov_ur = vector(min(r1_ur.x,r2_ur.x),min(r1_ur.y,r2_ur.y))
#ov_ll = vector(max(r1_ll.x,r2_ll.x),max(r1_ll.y,r2_ll.y))
dy = min(r1_ur.y,r2_ur.y)-max(r1_ll.y,r2_ll.y)
dx = min(r1_ur.x,r2_ur.x)-max(r1_ll.x,r2_ll.x)
if dx>=0 and dy>=0:
return [dx,dy]
else:
return [0,0]
def overlap_length(self, other):
"""
Calculate the intersection segment and determine its length
"""
if self.contains(other):
return math.inf
elif other.contains(self):
return math.inf
else:
intersections = self.compute_overlap_segment(other)
# This is the common case where two pairs of edges overlap
# at two points, so just find the distance between those two points
if len(intersections)==2:
(p1,p2) = intersections
return math.sqrt(pow(p1[0]-p2[0],2) + pow(p1[1]-p2[1],2))
else:
# This is where we had a corner intersection or none
return 0
def compute_overlap_segment(self, other):
"""
Calculate the intersection segment of two rectangles
(if any)
"""
(r1_ll,r1_ur) = self.rect
(r2_ll,r2_ur) = other.rect
# The other corners besides ll and ur
r1_ul = vector(r1_ll.x, r1_ur.y)
r1_lr = vector(r1_ur.x, r1_ll.y)
r2_ul = vector(r2_ll.x, r2_ur.y)
r2_lr = vector(r2_ur.x, r2_ll.y)
from itertools import tee
def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = tee(iterable)
next(b, None)
return zip(a, b)
# R1 edges CW
r1_cw_points = [r1_ll, r1_ul, r1_ur, r1_lr, r1_ll]
r1_edges = []
for (p,q) in pairwise(r1_cw_points):
r1_edges.append([p,q])
# R2 edges CW
r2_cw_points = [r2_ll, r2_ul, r2_ur, r2_lr, r2_ll]
r2_edges = []
for (p,q) in pairwise(r2_cw_points):
r2_edges.append([p,q])
# There are 4 edges on each rectangle
# so just brute force check intersection of each
# Two pairs of them should intersect
intersections = []
for r1e in r1_edges:
for r2e in r2_edges:
i = self.segment_intersection(r1e, r2e)
if i:
intersections.append(i)
return intersections
def on_segment(self, p, q, r):
"""
Given three co-linear points, determine if q lies on segment pr
"""
if q[0] <= max(p[0], r[0]) and \
q[0] >= min(p[0], r[0]) and \
q[1] <= max(p[1], r[1]) and \
q[1] >= min(p[1], r[1]):
return True
return False
def segment_intersection(self, s1, s2):
"""
Determine the intersection point of two segments
Return the a segment if they overlap.
Return None if they don't.
"""
(a,b) = s1
(c,d) = s2
# Line AB represented as a1x + b1y = c1
a1 = b.y - a.y
b1 = a.x - b.x
c1 = a1*a.x + b1*a.y
# Line CD represented as a2x + b2y = c2
a2 = d.y - c.y
b2 = c.x - d.x
c2 = a2*c.x + b2*c.y
determinant = a1*b2 - a2*b1
if determinant!=0:
x = (b2*c1 - b1*c2)/determinant
y = (a1*c2 - a2*c1)/determinant
r = [x,y]
if self.on_segment(a, r, b) and self.on_segment(c, r, d):
return [x, y]
return None