OpenRAM/compiler/characterizer/functional.py

438 lines
20 KiB
Python

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import collections
import debug
import random
import math
from .stimuli import *
from .charutils import *
from globals import OPTS
from .simulation import simulation
class functional(simulation):
"""
Functions to write random data values to a random address then read them back and check
for successful SRAM operation.
"""
def __init__(self, sram, spfile, corner):
super().__init__(sram, spfile, corner)
# Seed the characterizer with a constant seed for unit tests
if OPTS.is_unit_test:
random.seed(12345)
if self.write_size:
self.num_wmasks = int(math.ceil(self.word_size / self.write_size))
else:
self.num_wmasks = 0
if not self.num_spare_cols:
self.num_spare_cols = 0
self.probe_address, self.probe_data = '0' * self.addr_size, 0
self.set_corner(corner)
self.set_spice_constants()
self.set_stimulus_variables()
# For the debug signal names
self.create_signal_names()
self.add_graph_exclusions()
self.create_graph()
self.set_internal_spice_names()
self.q_name, self.qbar_name = self.get_bit_name()
debug.info(2, "q name={}\nqbar name={}".format(self.q_name, self.qbar_name))
# Number of checks can be changed
self.num_cycles = 15
# This is to have ordered keys for random selection
self.stored_words = collections.OrderedDict()
self.read_check = []
self.read_results = []
def run(self, feasible_period=None):
if feasible_period: # period defaults to tech.py feasible period otherwise.
self.period = feasible_period
# Generate a random sequence of reads and writes
self.create_random_memory_sequence()
# Run SPICE simulation
self.write_functional_stimulus()
self.stim.run_sim()
# read dout values from SPICE simulation. If the values do not fall within the noise margins, return the error.
(success, error) = self.read_stim_results()
if not success:
return (0, error)
# Check read values with written values. If the values do not match, return an error.
return self.check_stim_results()
def check_lengths(self):
""" Do a bunch of assertions. """
for port in self.all_ports:
checks = []
if port in self.read_ports:
checks.append((self.addr_value[port], "addr"))
if port in self.write_ports:
checks.append((self.data_value[port], "data"))
checks.append((self.wmask_value[port], "wmask"))
checks.append((self.spare_wen_value[port], "spare_wen"))
for (val, name) in checks:
debug.check(len(self.cycle_times)==len(val),
"Port {2} lengths don't match. {0} clock values, {1} {3} values".format(len(self.cycle_times),
len(val),
port,
name))
def create_random_memory_sequence(self):
if self.write_size:
rw_ops = ["noop", "write", "partial_write", "read"]
w_ops = ["noop", "write", "partial_write"]
else:
rw_ops = ["noop", "write", "read"]
w_ops = ["noop", "write"]
r_ops = ["noop", "read"]
# First cycle idle is always an idle cycle
comment = self.gen_cycle_comment("noop", "0" * self.word_size, "0" * self.addr_size, "0" * self.num_wmasks, 0, self.t_current)
self.add_noop_all_ports(comment)
# 1. Write all the write ports first to seed a bunch of locations.
for port in self.write_ports:
addr = self.gen_addr()
word = self.gen_data()
comment = self.gen_cycle_comment("write", word, addr, "1" * self.num_wmasks, port, self.t_current)
self.add_write_one_port(comment, addr, word, "1" * self.num_wmasks, port)
self.stored_words[addr] = word
# All other read-only ports are noops.
for port in self.read_ports:
if port not in self.write_ports:
self.add_noop_one_port(port)
self.cycle_times.append(self.t_current)
self.t_current += self.period
self.check_lengths()
# 2. Read at least once. For multiport, it is important that one
# read cycle uses all RW and R port to read from the same
# address simultaniously. This will test the viablilty of the
# transistor sizing in the bitcell.
for port in self.all_ports:
if port in self.write_ports:
self.add_noop_one_port(port)
else:
comment = self.gen_cycle_comment("read", word, addr, "0" * self.num_wmasks, port, self.t_current)
self.add_read_one_port(comment, addr, port)
self.add_read_check(word, port)
self.cycle_times.append(self.t_current)
self.t_current += self.period
self.check_lengths()
# 3. Perform a random sequence of writes and reads on random
# ports, using random addresses and random words and random
# write masks (if applicable)
for i in range(self.num_cycles):
w_addrs = []
for port in self.all_ports:
if port in self.readwrite_ports:
op = random.choice(rw_ops)
elif port in self.write_ports:
op = random.choice(w_ops)
else:
op = random.choice(r_ops)
if op == "noop":
self.add_noop_one_port(port)
elif op == "write":
addr = self.gen_addr()
# two ports cannot write to the same address
if addr in w_addrs:
self.add_noop_one_port(port)
else:
word = self.gen_data()
comment = self.gen_cycle_comment("write", word, addr, "1" * self.num_wmasks, port, self.t_current)
self.add_write_one_port(comment, addr, word, "1" * self.num_wmasks, port)
self.stored_words[addr] = word
w_addrs.append(addr)
elif op == "partial_write":
# write only to a word that's been written to
(addr, old_word) = self.get_data()
# two ports cannot write to the same address
if addr in w_addrs:
self.add_noop_one_port(port)
else:
word = self.gen_data()
wmask = self.gen_wmask()
new_word = self.gen_masked_data(old_word, word, wmask)
comment = self.gen_cycle_comment("partial_write", word, addr, wmask, port, self.t_current)
self.add_write_one_port(comment, addr, word, wmask, port)
self.stored_words[addr] = new_word
w_addrs.append(addr)
else:
(addr, word) = random.choice(list(self.stored_words.items()))
# The write driver is not sized sufficiently to drive through the two
# bitcell access transistors to the read port. So, for now, we do not allow
# a simultaneous write and read to the same address on different ports. This
# could be even more difficult with multiple simultaneous read ports.
if addr in w_addrs:
self.add_noop_one_port(port)
else:
comment = self.gen_cycle_comment("read", word, addr, "0" * self.num_wmasks, port, self.t_current)
self.add_read_one_port(comment, addr, port)
self.add_read_check(word, port)
self.cycle_times.append(self.t_current)
self.t_current += self.period
# Last cycle idle needed to correctly measure the value on the second to last clock edge
comment = self.gen_cycle_comment("noop", "0" * self.word_size, "0" * self.addr_size, "0" * self.num_wmasks, 0, self.t_current)
self.add_noop_all_ports(comment)
def gen_masked_data(self, old_word, word, wmask):
""" Create the masked data word """
# Start with the new word
new_word = word
# When the write mask's bits are 0, the old data values should appear in the new word
# as to not overwrite the old values
for bit in range(len(wmask)):
if wmask[bit] == "0":
lower = bit * self.write_size
upper = lower + self.write_size - 1
new_word = new_word[:lower] + old_word[lower:upper + 1] + new_word[upper + 1:]
return new_word
def add_read_check(self, word, port):
""" Add to the check array to ensure a read works. """
try:
self.check
except:
self.check = 0
self.read_check.append([word, "{0}{1}".format(self.dout_name, port), self.t_current + self.period, self.check])
self.check += 1
def read_stim_results(self):
# Extract dout values from spice timing.lis
for (word, dout_port, eo_period, check) in self.read_check:
sp_read_value = ""
for bit in range(self.word_size + self.num_spare_cols):
value = parse_spice_list("timing", "v{0}.{1}ck{2}".format(dout_port.lower(), bit, check))
if value > self.v_high:
sp_read_value = "1" + sp_read_value
elif value < self.v_low:
sp_read_value = "0" + sp_read_value
else:
error ="FAILED: {0}_{1} value {2} at time {3}n does not fall within noise margins <{4} or >{5}.".format(dout_port,
bit,
value,
eo_period,
self.v_low,
self.v_high)
return (0, error)
self.read_results.append([sp_read_value, dout_port, eo_period, check])
return (1, "SUCCESS")
def check_stim_results(self):
for i in range(len(self.read_check)):
if self.read_check[i][0] != self.read_results[i][0]:
str = "FAILED: {0} value {1} does not match written value {2} read during cycle {3} at time {4}n"
error = str.format(self.read_results[i][1],
self.read_results[i][0],
self.read_check[i][0],
int((self.read_results[i][2] - self.period) / self.period),
self.read_results[i][2])
return(0, error)
return(1, "SUCCESS")
def gen_wmask(self):
wmask = ""
# generate a random wmask
for bit in range(self.num_wmasks):
rand = random.randint(0, 1)
wmask += str(rand)
# prevent the wmask from having all bits on or off (this is not a partial write)
all_zeroes = True
all_ones = True
for bit in range(self.num_wmasks):
if wmask[bit]=="0":
all_ones = False
elif wmask[bit]=="1":
all_zeroes = False
if all_zeroes:
index = random.randint(0, self.num_wmasks - 1)
wmask = wmask[:index] + "1" + wmask[index + 1:]
elif all_ones:
index = random.randint(0, self.num_wmasks - 1)
wmask = wmask[:index] + "0" + wmask[index + 1:]
# wmask must be reversed since a python list goes right to left and sram bits go left to right.
return wmask[::-1]
def gen_data(self):
""" Generates a random word to write. """
if not self.num_spare_cols:
random_value = random.randint(0, (2 ** self.word_size) - 1)
else:
random_value1 = random.randint(0, (2 ** self.word_size) - 1)
random_value2 = random.randint(0, (2 ** self.num_spare_cols) - 1)
random_value = random_value1 + random_value2
data_bits = self.convert_to_bin(random_value, False)
return data_bits
def gen_addr(self):
""" Generates a random address value to write to. """
if self.num_spare_rows==0:
random_value = random.randint(0, (2 ** self.addr_size) - 1)
else:
random_value = random.randint(0, ((2 ** (self.addr_size - 1) - 1)) + (self.num_spare_rows * self.words_per_row))
addr_bits = self.convert_to_bin(random_value, True)
return addr_bits
def get_data(self):
""" Gets an available address and corresponding word. """
# Used for write masks since they should be writing to previously written addresses
addr = random.choice(list(self.stored_words.keys()))
word = self.stored_words[addr]
return (addr, word)
def convert_to_bin(self, value, is_addr):
""" Converts addr & word to usable binary values. """
new_value = str.replace(bin(value), "0b", "")
if(is_addr):
expected_value = self.addr_size
else:
expected_value = self.word_size + self.num_spare_cols
for i in range(expected_value - len(new_value)):
new_value = "0" + new_value
# print("Binary Conversion: {} to {}".format(value, new_value))
return new_value
def write_functional_stimulus(self):
""" Writes SPICE stimulus. """
temp_stim = "{0}/stim.sp".format(OPTS.openram_temp)
self.sf = open(temp_stim, "w")
self.sf.write("* Functional test stimulus file for {}ns period\n\n".format(self.period))
self.stim = stimuli(self.sf, self.corner)
# Write include statements
self.stim.write_include(self.sp_file)
# Write Vdd/Gnd statements
self.sf.write("\n* Global Power Supplies\n")
self.stim.write_supply()
# Instantiate the SRAM
self.sf.write("\n* Instantiation of the SRAM\n")
self.stim.inst_model(pins=self.pins,
model_name=self.sram.name)
# Add load capacitance to each of the read ports
self.sf.write("\n* SRAM output loads\n")
for port in self.read_ports:
for bit in range(self.word_size + self.num_spare_cols):
sig_name="{0}{1}_{2} ".format(self.dout_name, port, bit)
self.sf.write("CD{0}{1} {2} 0 {3}f\n".format(port, bit, sig_name, self.load))
# Write important signals to stim file
self.sf.write("\n\n* Important signals for debug\n")
self.sf.write("* bl: {}\n".format(self.bl_name))
self.sf.write("* br: {}\n".format(self.br_name))
self.sf.write("* s_en: {}\n".format(self.sen_name))
self.sf.write("* q: {}\n".format(self.q_name))
self.sf.write("* qbar: {}\n".format(self.qbar_name))
# Write debug comments to stim file
self.sf.write("\n\n* Sequence of operations\n")
for comment in self.fn_cycle_comments:
self.sf.write("*{}\n".format(comment))
# Generate data input bits
self.sf.write("\n* Generation of data and address signals\n")
for port in self.write_ports:
for bit in range(self.word_size + self.num_spare_cols):
sig_name="{0}{1}_{2} ".format(self.din_name, port, bit)
self.stim.gen_pwl(sig_name, self.cycle_times, self.data_values[port][bit], self.period, self.slew, 0.05)
# Generate address bits
for port in self.all_ports:
for bit in range(self.addr_size):
sig_name="{0}{1}_{2} ".format(self.addr_name, port, bit)
self.stim.gen_pwl(sig_name, self.cycle_times, self.addr_values[port][bit], self.period, self.slew, 0.05)
# Generate control signals
self.sf.write("\n * Generation of control signals\n")
for port in self.all_ports:
self.stim.gen_pwl("CSB{}".format(port), self.cycle_times, self.csb_values[port], self.period, self.slew, 0.05)
for port in self.readwrite_ports:
self.stim.gen_pwl("WEB{}".format(port), self.cycle_times, self.web_values[port], self.period, self.slew, 0.05)
# Generate wmask bits
for port in self.write_ports:
if self.write_size:
self.sf.write("\n* Generation of wmask signals\n")
for bit in range(self.num_wmasks):
sig_name = "WMASK{0}_{1} ".format(port, bit)
# self.stim.gen_pwl(sig_name, self.cycle_times, self.data_values[port][bit], self.period,
# self.slew, 0.05)
self.stim.gen_pwl(sig_name, self.cycle_times, self.wmask_values[port][bit], self.period,
self.slew, 0.05)
# Generate spare enable bits (for spare cols)
for port in self.write_ports:
if self.num_spare_cols:
self.sf.write("\n* Generation of spare enable signals\n")
for bit in range(self.num_spare_cols):
sig_name = "SPARE_WEN{0}_{1} ".format(port, bit)
self.stim.gen_pwl(sig_name, self.cycle_times, self.spare_wen_values[port][bit], self.period,
self.slew, 0.05)
# Generate CLK signals
for port in self.all_ports:
self.stim.gen_pulse(sig_name="{0}{1}".format("clk", port),
v1=self.gnd_voltage,
v2=self.vdd_voltage,
offset=self.period,
period=self.period,
t_rise=self.slew,
t_fall=self.slew)
# Generate dout value measurements
self.sf.write("\n * Generation of dout measurements\n")
for (word, dout_port, eo_period, check) in self.read_check:
t_intital = eo_period - 0.01 * self.period
t_final = eo_period + 0.01 * self.period
for bit in range(self.word_size + self.num_spare_cols):
self.stim.gen_meas_value(meas_name="V{0}_{1}ck{2}".format(dout_port, bit, check),
dout="{0}_{1}".format(dout_port, bit),
t_intital=t_intital,
t_final=t_final)
self.stim.write_control(self.cycle_times[-1] + self.period)
self.sf.close()
#FIXME: Similar function to delay.py, refactor this
def get_bit_name(self):
""" Get a bit cell name """
(cell_name, cell_inst) = self.sram.get_cell_name(self.sram.name, 0, 0)
storage_names = cell_inst.mod.get_storage_net_names()
debug.check(len(storage_names) == 2, ("Only inverting/non-inverting storage nodes"
"supported for characterization. Storage nets={}").format(storage_names))
q_name = cell_name + '.' + str(storage_names[0])
qbar_name = cell_name + '.' + str(storage_names[1])
return (q_name, qbar_name)