OpenRAM/compiler/pgates/pnand2.py

318 lines
13 KiB
Python

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import contact
import pgate
import debug
from tech import drc, parameter, spice
from globals import OPTS
from vector import vector
import logical_effort
from sram_factory import factory
class pnand2(pgate.pgate):
"""
This module generates gds of a parametrically sized 2-input nand.
This model use ptx to generate a 2-input nand within a cetrain height.
"""
def __init__(self, name, size=1, height=None):
""" Creates a cell for a simple 2 input nand """
debug.info(2,
"creating pnand2 structure {0} with size of {1}".format(name,
size))
self.add_comment("size: {}".format(size))
self.size = size
self.nmos_size = 2 * size
self.pmos_size = parameter["beta"] * size
self.nmos_width = self.nmos_size * drc("minwidth_tx")
self.pmos_width = self.pmos_size * drc("minwidth_tx")
# FIXME: Allow these to be sized
debug.check(size == 1, "Size 1 pnand2 is only supported now.")
self.tx_mults = 1
if OPTS.tech_name == "s8":
(self.nmos_width, self.tx_mults) = self.bin_width("nmos", self.nmos_width)
(self.pmos_width, self.tx_mults) = self.bin_width("pmos", self.pmos_width)
# Creates the netlist and layout
pgate.pgate.__init__(self, name, height)
def create_netlist(self):
self.add_pins()
self.add_ptx()
self.create_ptx()
def create_layout(self):
""" Calls all functions related to the generation of the layout """
self.setup_layout_constants()
self.place_ptx()
self.add_well_contacts()
self.determine_width()
self.route_supply_rails()
self.connect_rails()
self.extend_wells()
self.route_inputs()
self.route_output()
self.add_boundary()
def add_pins(self):
""" Adds pins for spice netlist """
pin_list = ["A", "B", "Z", "vdd", "gnd"]
dir_list = ["INPUT", "INPUT", "OUTPUT", "POWER", "GROUND"]
self.add_pin_list(pin_list, dir_list)
def add_ptx(self):
""" Create the PMOS and NMOS transistors. """
self.nmos_nd = factory.create(module_type="ptx",
width=self.nmos_width,
mults=self.tx_mults,
tx_type="nmos",
add_drain_contact=False,
connect_poly=True,
connect_active=True)
self.add_mod(self.nmos_nd)
self.nmos_ns = factory.create(module_type="ptx",
width=self.nmos_width,
mults=self.tx_mults,
tx_type="nmos",
add_source_contact=False,
connect_poly=True,
connect_active=True)
self.add_mod(self.nmos_ns)
self.pmos = factory.create(module_type="ptx",
width=self.pmos_width,
mults=self.tx_mults,
tx_type="pmos",
connect_poly=True,
connect_active=True)
self.add_mod(self.pmos)
def setup_layout_constants(self):
""" Pre-compute some handy layout parameters. """
# metal spacing to allow contacts on any layer
self.input_spacing = max(self.poly_space + contact.poly_contact.first_layer_width,
self.m1_space + contact.m1_via.first_layer_width,
self.m2_space + contact.m2_via.first_layer_width,
self.m3_space + contact.m2_via.second_layer_width)
# Compute the other pmos2 location,
# but determining offset to overlap the
# source and drain pins
self.overlap_offset = self.pmos.get_pin("D").ll() - self.pmos.get_pin("S").ll()
# This is the extra space needed to ensure DRC rules
# to the active contacts
extra_contact_space = max(-self.nmos_nd.get_pin("D").by(), 0)
# This is a poly-to-poly of a flipped cell
self.top_bottom_space = max(0.5 * self.m1_width + self.m1_space + extra_contact_space,
self.poly_extend_active + self.poly_space)
def route_supply_rails(self):
""" Add vdd/gnd rails to the top and bottom. """
self.add_layout_pin_rect_center(text="gnd",
layer="m1",
offset=vector(0.5*self.width, 0),
width=self.width)
self.add_layout_pin_rect_center(text="vdd",
layer="m1",
offset=vector(0.5 * self.width, self.height),
width=self.width)
def create_ptx(self):
"""
Add PMOS and NMOS to the netlist.
"""
self.pmos1_inst = self.add_inst(name="pnand2_pmos1",
mod=self.pmos)
self.connect_inst(["vdd", "A", "Z", "vdd"])
self.pmos2_inst = self.add_inst(name="pnand2_pmos2",
mod=self.pmos)
self.connect_inst(["Z", "B", "vdd", "vdd"])
self.nmos1_inst = self.add_inst(name="pnand2_nmos1",
mod=self.nmos_nd)
self.connect_inst(["Z", "B", "net1", "gnd"])
self.nmos2_inst = self.add_inst(name="pnand2_nmos2",
mod=self.nmos_ns)
self.connect_inst(["net1", "A", "gnd", "gnd"])
def place_ptx(self):
"""
Place PMOS and NMOS to the layout at the upper-most and lowest position
to provide maximum routing in channel
"""
pmos1_pos = vector(self.pmos.active_offset.x,
self.height - self.pmos.active_height \
- self.top_bottom_space)
self.pmos1_inst.place(pmos1_pos)
self.pmos2_pos = pmos1_pos + self.overlap_offset
self.pmos2_inst.place(self.pmos2_pos)
nmos1_pos = vector(self.pmos.active_offset.x,
self.top_bottom_space)
self.nmos1_inst.place(nmos1_pos)
self.nmos2_pos = nmos1_pos + self.overlap_offset
self.nmos2_inst.place(self.nmos2_pos)
# Output position will be in between the PMOS and NMOS
self.output_pos = vector(0,
0.5 * (pmos1_pos.y + nmos1_pos.y + self.nmos_nd.active_height))
def add_well_contacts(self):
"""
Add n/p well taps to the layout and connect to supplies
AFTER the wells are created
"""
self.add_nwell_contact(self.pmos,
self.pmos2_pos + vector(self.m1_pitch, 0))
self.add_pwell_contact(self.nmos_nd,
self.nmos2_pos + vector(self.m1_pitch, 0))
def connect_rails(self):
""" Connect the nmos and pmos to its respective power rails """
self.connect_pin_to_rail(self.nmos1_inst, "S", "gnd")
self.connect_pin_to_rail(self.pmos1_inst, "S", "vdd")
self.connect_pin_to_rail(self.pmos2_inst, "D", "vdd")
def route_inputs(self):
""" Route the A and B inputs """
inputB_yoffset = self.nmos2_inst.uy() + 0.5 * contact.poly_contact.height
self.route_input_gate(self.pmos2_inst,
self.nmos2_inst,
inputB_yoffset,
"B",
position="center")
# This will help with the wells and the input/output placement
self.inputA_yoffset = self.pmos2_inst.by() - self.poly_extend_active \
- contact.poly_contact.height
self.route_input_gate(self.pmos1_inst,
self.nmos1_inst,
self.inputA_yoffset,
"A")
def route_output(self):
""" Route the Z output """
# PMOS1 drain
pmos_pin = self.pmos1_inst.get_pin("D")
top_pin_offset = pmos_pin.center()
# NMOS2 drain
nmos_pin = self.nmos2_inst.get_pin("D")
bottom_pin_offset = nmos_pin.center()
# Output pin
c_pin = self.get_pin("B")
out_offset = vector(c_pin.cx() + self.m1_pitch,
self.inputA_yoffset)
# This routes on M2
# # Midpoints of the L routes go horizontal first then vertical
# mid1_offset = vector(out_offset.x, top_pin_offset.y)
# mid2_offset = vector(out_offset.x, bottom_pin_offset.y)
# # Non-preferred active contacts
# self.add_via_center(layers=self.m1_stack,
# directions=("V", "H"),
# offset=pmos_pin.center())
# # Non-preferred active contacts
# self.add_via_center(layers=self.m1_stack,
# directions=("V", "H"),
# offset=nmos_pin.center())
# self.add_via_center(layers=self.m1_stack,
# offset=out_offset)
# # PMOS1 to mid-drain to NMOS2 drain
# self.add_path("m2",
# [top_pin_offset, mid1_offset, out_offset,
# mid2_offset, bottom_pin_offset])
# This routes on M1
# Midpoints of the L routes goes vertical first then horizontal
mid1_offset = vector(top_pin_offset.x, out_offset.y)
# Midpoints of the L routes goes horizontal first then vertical
mid2_offset = vector(out_offset.x, bottom_pin_offset.y)
self.add_path("m1",
[top_pin_offset, mid1_offset, out_offset])
# Route in two segments to have the width rule
self.add_path("m1",
[bottom_pin_offset, mid2_offset + vector(0.5 * self.m1_width, 0)],
width=nmos_pin.height())
self.add_path("m1",
[mid2_offset, out_offset])
# This extends the output to the edge of the cell
self.add_layout_pin_rect_center(text="Z",
layer="m1",
offset=out_offset,
width=contact.m1_via.first_layer_width,
height=contact.m1_via.first_layer_height)
def analytical_power(self, corner, load):
"""Returns dynamic and leakage power. Results in nW"""
c_eff = self.calculate_effective_capacitance(load)
freq = spice["default_event_frequency"]
power_dyn = self.calc_dynamic_power(corner, c_eff, freq)
power_leak = spice["nand2_leakage"]
total_power = self.return_power(power_dyn, power_leak)
return total_power
def calculate_effective_capacitance(self, load):
"""Computes effective capacitance. Results in fF"""
c_load = load
# In fF
c_para = spice["min_tx_drain_c"] * (self.nmos_size / parameter["min_tx_size"])
transition_prob = 0.1875
return transition_prob * (c_load + c_para)
def input_load(self):
"""Return the relative input capacitance of a single input"""
return self.nmos_size + self.pmos_size
def get_stage_effort(self, cout, inp_is_rise=True):
"""
Returns an object representing the parameters for delay in tau units.
Optional is_rise refers to the input direction rise/fall.
Input inverted by this stage.
"""
parasitic_delay = 2
return logical_effort.logical_effort(self.name,
self.size,
self.input_load(),
cout,
parasitic_delay,
not inp_is_rise)
def build_graph(self, graph, inst_name, port_nets):
"""
Adds edges based on inputs/outputs.
Overrides base class function.
"""
self.add_graph_edges(graph, port_nets)