mirror of https://github.com/VLSIDA/OpenRAM.git
233 lines
9.3 KiB
Python
233 lines
9.3 KiB
Python
import contact
|
|
import pgate
|
|
import debug
|
|
from tech import drc, parameter, spice
|
|
from ptx import ptx
|
|
from vector import vector
|
|
from globals import OPTS
|
|
|
|
class pnand2(pgate.pgate):
|
|
"""
|
|
This module generates gds of a parametrically sized 2-input nand.
|
|
This model use ptx to generate a 2-input nand within a cetrain height.
|
|
"""
|
|
|
|
c = reload(__import__(OPTS.bitcell))
|
|
bitcell = getattr(c, OPTS.bitcell)
|
|
|
|
unique_id = 1
|
|
|
|
def __init__(self, size=1, height=bitcell.height):
|
|
""" Creates a cell for a simple 2 input nand """
|
|
name = "pnand2_{0}".format(pnand2.unique_id)
|
|
pnand2.unique_id += 1
|
|
pgate.pgate.__init__(self, name)
|
|
debug.info(2, "create pnand2 structure {0} with size of {1}".format(name, size))
|
|
|
|
self.nmos_size = 2*size
|
|
self.pmos_size = parameter["beta"]*size
|
|
self.nmos_width = self.nmos_size*drc["minwidth_tx"]
|
|
self.pmos_width = self.pmos_size*drc["minwidth_tx"]
|
|
self.height = height
|
|
|
|
# FIXME: Allow these to be sized
|
|
debug.check(size==1,"Size 1 pnand2 is only supported now.")
|
|
self.tx_mults = 1
|
|
|
|
self.add_pins()
|
|
self.create_layout()
|
|
#self.DRC_LVS()
|
|
|
|
|
|
def add_pins(self):
|
|
""" Adds pins for spice netlist """
|
|
self.add_pin_list(["A", "B", "Z", "vdd", "gnd"])
|
|
|
|
def create_layout(self):
|
|
""" Calls all functions related to the generation of the layout """
|
|
|
|
self.create_ptx()
|
|
self.setup_layout_constants()
|
|
self.add_supply_rails()
|
|
self.add_ptx()
|
|
self.connect_rails()
|
|
self.add_well_contacts()
|
|
self.extend_wells(self.well_pos)
|
|
self.route_inputs()
|
|
self.route_output()
|
|
|
|
def create_ptx(self):
|
|
""" Create the PMOS and NMOS transistors. """
|
|
self.nmos = ptx(width=self.nmos_width,
|
|
mults=self.tx_mults,
|
|
tx_type="nmos",
|
|
connect_poly=True,
|
|
connect_active=True)
|
|
self.add_mod(self.nmos)
|
|
|
|
self.pmos = ptx(width=self.pmos_width,
|
|
mults=self.tx_mults,
|
|
tx_type="pmos",
|
|
connect_poly=True,
|
|
connect_active=True)
|
|
self.add_mod(self.pmos)
|
|
|
|
def setup_layout_constants(self):
|
|
""" Pre-compute some handy layout parameters. """
|
|
|
|
# metal spacing to allow contacts on any layer
|
|
self.input_spacing = max(self.poly_space + contact.poly.first_layer_width,
|
|
self.m1_space + contact.m1m2.first_layer_width,
|
|
self.m2_space + contact.m2m3.first_layer_width,
|
|
self.m3_space + contact.m2m3.second_layer_width)
|
|
|
|
|
|
# Compute the other pmos2 location, but determining offset to overlap the
|
|
# source and drain pins
|
|
self.overlap_offset = self.pmos.get_pin("D").ll() - self.pmos.get_pin("S").ll()
|
|
|
|
# Two PMOS devices and a well contact. Separation between each.
|
|
# Enclosure space on the sides.
|
|
self.well_width = 2*self.pmos.active_width + contact.active.width \
|
|
+ 2*drc["active_to_body_active"] + 2*drc["well_enclosure_active"]
|
|
|
|
self.width = self.well_width
|
|
# Height is an input parameter, so it is not recomputed.
|
|
|
|
# This is the extra space needed to ensure DRC rules to the active contacts
|
|
extra_contact_space = max(-self.nmos.get_pin("D").by(),0)
|
|
# This is a poly-to-poly of a flipped cell
|
|
self.top_bottom_space = max(0.5*self.m1_width + self.m1_space + extra_contact_space,
|
|
drc["poly_extend_active"], self.poly_space)
|
|
|
|
def add_supply_rails(self):
|
|
""" Add vdd/gnd rails to the top and bottom. """
|
|
self.add_layout_pin_rect_center(text="gnd",
|
|
layer="metal1",
|
|
offset=vector(0.5*self.width,0),
|
|
width=self.width)
|
|
|
|
self.add_layout_pin_rect_center(text="vdd",
|
|
layer="metal1",
|
|
offset=vector(0.5*self.width,self.height),
|
|
width=self.width)
|
|
|
|
def add_ptx(self):
|
|
"""
|
|
Add PMOS and NMOS to the layout at the upper-most and lowest position
|
|
to provide maximum routing in channel
|
|
"""
|
|
|
|
pmos1_pos = vector(self.pmos.active_offset.x,
|
|
self.height - self.pmos.active_height - self.top_bottom_space)
|
|
self.pmos1_inst=self.add_inst(name="pnand2_pmos1",
|
|
mod=self.pmos,
|
|
offset=pmos1_pos)
|
|
self.connect_inst(["vdd", "A", "Z", "vdd"])
|
|
|
|
self.pmos2_pos = pmos1_pos + self.overlap_offset
|
|
self.pmos2_inst = self.add_inst(name="pnand2_pmos2",
|
|
mod=self.pmos,
|
|
offset=self.pmos2_pos)
|
|
self.connect_inst(["Z", "B", "vdd", "vdd"])
|
|
|
|
|
|
nmos1_pos = vector(self.pmos.active_offset.x, self.top_bottom_space)
|
|
self.nmos1_inst=self.add_inst(name="pnand2_nmos1",
|
|
mod=self.nmos,
|
|
offset=nmos1_pos)
|
|
self.connect_inst(["Z", "B", "net1", "gnd"])
|
|
|
|
self.nmos2_pos = nmos1_pos + self.overlap_offset
|
|
self.nmos2_inst=self.add_inst(name="pnand2_nmos2",
|
|
mod=self.nmos,
|
|
offset=self.nmos2_pos)
|
|
self.connect_inst(["net1", "A", "gnd", "gnd"])
|
|
|
|
# Output position will be in between the PMOS and NMOS
|
|
self.output_pos = vector(0,0.5*(pmos1_pos.y+nmos1_pos.y+self.nmos.active_height))
|
|
|
|
# This will help with the wells
|
|
self.well_pos = vector(0,self.nmos1_inst.uy())
|
|
|
|
def add_well_contacts(self):
|
|
""" Add n/p well taps to the layout and connect to supplies AFTER the wells are created """
|
|
|
|
self.add_nwell_contact(self.pmos, self.pmos2_pos)
|
|
self.add_pwell_contact(self.nmos, self.nmos2_pos)
|
|
|
|
|
|
def connect_rails(self):
|
|
""" Connect the nmos and pmos to its respective power rails """
|
|
|
|
self.connect_pin_to_rail(self.nmos1_inst,"S","gnd")
|
|
|
|
self.connect_pin_to_rail(self.pmos1_inst,"S","vdd")
|
|
|
|
self.connect_pin_to_rail(self.pmos2_inst,"D","vdd")
|
|
|
|
def route_inputs(self):
|
|
""" Route the A and B inputs """
|
|
inputB_yoffset = self.nmos2_pos.y + self.nmos.active_height + self.m2_space + 0.5*self.m2_width
|
|
self.route_input_gate(self.pmos2_inst, self.nmos2_inst, inputB_yoffset, "B", position="center")
|
|
|
|
# This will help with the wells and the input/output placement
|
|
self.inputA_yoffset = inputB_yoffset + self.input_spacing
|
|
self.route_input_gate(self.pmos1_inst, self.nmos1_inst, self.inputA_yoffset, "A")
|
|
|
|
|
|
def route_output(self):
|
|
""" Route the Z output """
|
|
# PMOS1 drain
|
|
pmos_pin = self.pmos1_inst.get_pin("D")
|
|
# NMOS2 drain
|
|
nmos_pin = self.nmos2_inst.get_pin("D")
|
|
# Output pin
|
|
mid_offset = vector(nmos_pin.center().x,self.inputA_yoffset)
|
|
|
|
self.add_contact_center(layers=("metal1", "via1", "metal2"),
|
|
offset=pmos_pin.center())
|
|
self.add_contact_center(layers=("metal1", "via1", "metal2"),
|
|
offset=nmos_pin.center())
|
|
self.add_contact_center(layers=("metal1", "via1", "metal2"),
|
|
offset=mid_offset,
|
|
rotate=90)
|
|
|
|
# PMOS1 to mid-drain to NMOS2 drain
|
|
self.add_path("metal2",[pmos_pin.bc(), mid_offset, nmos_pin.uc()])
|
|
|
|
# This extends the output to the edge of the cell
|
|
self.add_layout_pin_rect_center(text="Z",
|
|
layer="metal1",
|
|
offset=mid_offset,
|
|
width=contact.m1m2.first_layer_height,
|
|
height=contact.m1m2.first_layer_width)
|
|
|
|
|
|
|
|
|
|
def input_load(self):
|
|
return ((self.nmos_size+self.pmos_size)/parameter["min_tx_size"])*spice["min_tx_gate_c"]
|
|
|
|
def analytical_delay(self, slew, load=0.0):
|
|
r = spice["min_tx_r"]/(self.nmos_size/parameter["min_tx_size"])
|
|
c_para = spice["min_tx_drain_c"]*(self.nmos_size/parameter["min_tx_size"])#ff
|
|
return self.cal_delay_with_rc(r = r, c = c_para+load, slew = slew)
|
|
|
|
def analytical_power(self, proc, vdd, temp, load):
|
|
"""Returns dynamic and leakage power. Results in nW"""
|
|
c_eff = self.calculate_effective_capacitance(load)
|
|
freq = spice["default_event_rate"]
|
|
power_dyn = c_eff*vdd*vdd*freq
|
|
power_leak = spice["nand2_leakage"]
|
|
|
|
total_power = self.return_power(power_dyn, power_leak)
|
|
return total_power
|
|
|
|
def calculate_effective_capacitance(self, load):
|
|
"""Computes effective capacitance. Results in fF"""
|
|
c_load = load
|
|
c_para = spice["min_tx_drain_c"]*(self.nmos_size/parameter["min_tx_size"])#ff
|
|
transistion_prob = spice["nand2_transisition_prob"]
|
|
return transistion_prob*(c_load + c_para)
|