OpenRAM/compiler/control_logic.py

652 lines
29 KiB
Python

from math import log
import design
from tech import drc, parameter
import debug
from contact import contact
from pinv import pinv
from nand_2 import nand_2
from nand_3 import nand_3
from nor_2 import nor_2
import math
from vector import vector
from globals import OPTS
class control_logic(design.design):
"""
Dynamically generated Control logic for the total SRAM circuit.
"""
def __init__(self, num_rows):
""" Constructor """
design.design.__init__(self, "control_logic")
debug.info(1, "Creating {}".format(self.name))
self.num_rows = num_rows
self.create_layout()
self.DRC_LVS()
def create_layout(self):
""" Create layout and route between modules """
self.create_modules()
self.setup_layout_offsets()
self.add_modules()
self.add_routing()
def create_modules(self):
""" add all the required modules """
input_lst =["csb","web","oeb","clk"]
output_lst = ["s_en", "w_en", "tri_en", "tri_en_bar", "clk_bar", "clk_buf"]
rails = ["vdd", "gnd"]
for pin in input_lst + output_lst + rails:
self.add_pin(pin)
self.nand2 = nand_2()
self.add_mod(self.nand2)
self.nand3 = nand_3()
self.add_mod(self.nand3)
self.nor2 = nor_2()
self.add_mod(self.nor2)
# Special gates: inverters for buffering
self.inv = self.inv1 = pinv()
self.add_mod(self.inv1)
self.inv2 = pinv(nmos_width=2*drc["minwidth_tx"])
self.add_mod(self.inv2)
self.inv4 = pinv(nmos_width=4*drc["minwidth_tx"])
self.add_mod(self.inv4)
self.inv8 = pinv(nmos_width=8*drc["minwidth_tx"])
self.add_mod(self.inv8)
self.inv16 = pinv(nmos_width=16*drc["minwidth_tx"])
self.add_mod(self.inv16)
c = reload(__import__(OPTS.config.ms_flop_array))
ms_flop_array = getattr(c, OPTS.config.ms_flop_array)
self.msf_control = ms_flop_array(name="msf_control",
columns=3,
word_size=3)
self.add_mod(self.msf_control)
c = reload(__import__(OPTS.config.replica_bitline))
replica_bitline = getattr(c, OPTS.config.replica_bitline)
self.replica_bitline = replica_bitline(rows=int(math.ceil(self.num_rows / 10.0)))
self.add_mod(self.replica_bitline)
def setup_layout_offsets(self):
""" Setup layout offsets, determine the size of the busses etc """
# These aren't for instantiating, but we use them to get the dimensions
self.poly_contact = contact(layer_stack=("poly", "contact", "metal1"))
self.poly_contact_offset = vector(0.5*self.poly_contact.width,0.5*self.poly_contact.height)
self.m1m2_via = contact(layer_stack=("metal1", "via1", "metal2"))
self.m2m3_via = contact(layer_stack=("metal2", "via2", "metal3"))
# For different layer width vias
self.m1m2_offset_fix = vector(0,0.5*(drc["minwidth_metal2"]-drc["minwidth_metal1"]))
# M1/M2 routing pitch is based on contacted pitch
self.m1_pitch = max(self.m1m2_via.width,self.m1m2_via.height) + max(drc["metal1_to_metal1"],drc["metal2_to_metal2"])
self.m2_pitch = max(self.m2m3_via.width,self.m2m3_via.height) + max(drc["metal2_to_metal2"],drc["metal3_to_metal3"])
# Have the cell gap leave enough room to route an M2 wire.
# Some cells may have pwell/nwell spacing problems too when the wells are different heights.
self.cell_gap = max(self.m2_pitch,drc["pwell_to_nwell"])
# Amount to shift a 90 degree rotated via from center-line path routing to it's offset
self.m1m2_via_offset = vector(self.m1m2_via.first_layer_height,-0.5*drc["minwidth_metal2"])
self.m2m3_via_offset = vector(self.m2m3_via.first_layer_height,-0.5*drc["minwidth_metal3"])
# First RAIL Parameters: gnd, oe, oebar, cs, we, clk_buf, clk_bar
self.rail_1_start_x = 0
self.num_rails_1 = 8
self.rail_1_names = ["clk_buf", "gnd", "oe_bar", "cs", "we", "vdd", "oe", "clk_bar"]
self.overall_rail_1_gap = (self.num_rails_1 + 2) * self.m2_pitch
self.rail_1_x_offsets = {}
# Second RAIL Parameters: vdd
self.rail_2_start_x = 0
self.num_rails_2 = 0
self.rail_2_names = ["vdd"]
self.overall_rail_2_gap = (self.num_rails_2 + 2) * self.m2_pitch
self.rail_2_x_offsets = {}
# GAP between main control and replica bitline
self.replica_bitline_gap = 2*self.m2_pitch
def add_modules(self):
""" Place all the modules """
self.add_control_flops()
self.add_clk_buffer(0)
self.add_1st_row(0)
self.add_2nd_row(self.inv1.height)
self.add_3rd_row(2*self.inv1.height)
self.add_control_routing()
self.add_rbl(0)
self.add_layout_pins()
self.add_lvs_correspondence_points()
self.height = max(self.replica_bitline.width, 3 * self.inv1.height, self.msf_offset.y)
self.width = self.replica_bitline_offset.x + self.replica_bitline.height
def add_routing(self):
""" Routing between modules """
self.add_clk_routing()
self.add_trien_routing()
self.add_rblk_routing()
self.add_wen_routing()
self.add_sen_routing()
self.add_output_routing()
self.add_supply_routing()
def add_control_flops(self):
""" Add the control signal flops for OEb, WEb, CSb. """
self.msf_offset = vector(0, self.inv.height+self.msf_control.width+2*self.m2_pitch)
self.msf_inst=self.add_inst(name="msf_control",
mod=self.msf_control,
offset=self.msf_offset,
rotate=270)
# don't change this order. This pins are meant for internal connection of msf array inside the control logic.
# These pins are connecting the msf_array inside of control_logic.
temp = ["oeb", "csb", "web",
"oe_bar", "oe",
"cs_bar", "cs",
"we_bar", "we",
"clk_buf", "vdd", "gnd"]
self.connect_inst(temp)
def add_rbl(self,y_off):
""" Add the replica bitline """
self.replica_bitline_offset = vector(self.rail_2_end_x , y_off)
self.rbl=self.add_inst(name="replica_bitline",
mod=self.replica_bitline,
offset=self.replica_bitline_offset,
mirror="MX",
rotate=90)
self.connect_inst(["rblk", "pre_s_en", "vdd", "gnd"])
def add_layout_pins(self):
""" Add the input/output layout pins. """
# Top to bottom: CS WE OE signal groups
pin_set = ["oeb","csb","web"]
for (i,pin_name) in zip(range(3),pin_set):
subpin_name="din[{}]".format(i)
pins=self.msf_inst.get_pins(subpin_name)
for pin in pins:
if pin.layer=="metal3":
self.add_layout_pin(text=pin_name,
layer="metal3",
offset=pin.ll(),
width=pin.width(),
height=pin.height())
pin=self.clk_inv1.get_pin("A")
self.add_layout_pin(text="clk",
layer="metal1",
offset=pin.ll())
pin=self.clk_inv1.get_pin("gnd")
self.add_layout_pin(text="gnd",
layer="metal1",
offset=pin.ll(),
width=self.width)
pin=self.clk_inv1.get_pin("vdd")
self.add_layout_pin(text="vdd",
layer="metal1",
offset=pin.ll(),
width=self.width)
def add_clk_buffer(self,y_off):
""" Add the multistage clock buffer below the control flops """
# 4 stage clock buffer
self.clk_inv1_offset = vector(0, y_off)
self.clk_inv1=self.add_inst(name="inv_clk1_bar",
mod=self.inv2,
offset=self.clk_inv1_offset)
self.connect_inst(["clk", "clk1_bar", "vdd", "gnd"])
self.clk_inv2_offset = self.clk_inv1_offset + vector(self.inv2.width,0)
self.clk_inv2=self.add_inst(name="inv_clk2",
mod=self.inv4,
offset=self.clk_inv2_offset)
self.connect_inst(["clk1_bar", "clk2", "vdd", "gnd"])
self.clk_bar_offset = self.clk_inv2_offset + vector(self.inv4.width,0)
self.clk_bar=self.add_inst(name="inv_clk_bar",
mod=self.inv8,
offset=self.clk_bar_offset)
self.connect_inst(["clk2", "clk_bar", "vdd", "gnd"])
self.clk_buf_offset = self.clk_bar_offset + vector(self.inv8.width,0)
self.clk_buf=self.add_inst(name="inv_clk_buf",
mod=self.inv16,
offset=self.clk_buf_offset)
self.connect_inst(["clk_bar", "clk_buf", "vdd", "gnd"])
# This is the first rail offset
self.rail_1_start_x = max(self.msf_offset.x + self.msf_control.height,self.clk_buf_offset.x+self.inv16.width)
def add_1st_row(self,y_off):
x_off = self.rail_1_start_x + self.overall_rail_1_gap
# input: OE, clk_bar,CS output: rblk_bar
self.rblk_bar_offset = vector(x_off, y_off)
self.rblk_bar=self.add_inst(name="nand3_rblk_bar",
mod=self.nand3,
offset=self.rblk_bar_offset)
self.connect_inst(["clk_bar", "oe", "cs", "rblk_bar", "vdd", "gnd"])
x_off += self.nand3.width
# input: rblk_bar, output: rblk
self.rblk_offset = vector(x_off, y_off)
self.rblk=self.add_inst(name="inv_rblk",
mod=self.inv1,
offset=self.rblk_offset)
self.connect_inst(["rblk_bar", "rblk", "vdd", "gnd"])
#x_off += self.inv1.width
self.row_1_width = x_off
def add_2nd_row(self, y_off):
# start after first rails
x_off = self.rail_1_start_x + self.overall_rail_1_gap
y_off += self.inv1.height
# input: clk_buf, OE_bar output: tri_en
self.tri_en_offset = vector(x_off, y_off)
self.tri_en=self.add_inst(name="nor2_tri_en",
mod=self.nor2,
offset=self.tri_en_offset,
mirror="MX")
self.connect_inst(["clk_buf", "oe_bar", "tri_en", "vdd", "gnd"])
x_off += self.nor2.width + self.cell_gap
# input: OE, clk_bar output: tri_en_bar
self.tri_en_bar_offset = vector(x_off,y_off)
self.tri_en_bar=self.add_inst(name="nand2_tri_en",
mod=self.nand2,
offset=self.tri_en_bar_offset,
mirror="MX")
self.connect_inst(["oe", "clk_bar", "tri_en_bar", "vdd", "gnd"])
x_off += self.nand2.width
x_off += self.inv1.width + self.cell_gap
# BUFFER INVERTERS FOR S_EN
# input: input: pre_s_en_bar, output: s_en
self.s_en_offset = vector(x_off, y_off)
self.s_en=self.add_inst(name="inv_s_en",
mod=self.inv1,
offset=self.s_en_offset,
mirror="XY")
self.connect_inst(["pre_s_en_bar", "s_en", "vdd", "gnd"])
x_off += self.inv1.width
# input: pre_s_en, output: pre_s_en_bar
self.pre_s_en_bar_offset = vector(x_off, y_off)
self.pre_s_en_bar=self.add_inst(name="inv_pre_s_en_bar",
mod=self.inv1,
offset=self.pre_s_en_bar_offset,
mirror="XY")
self.connect_inst(["pre_s_en", "pre_s_en_bar", "vdd", "gnd"])
#x_off += self.inv1.width
self.row_2_width = x_off
def add_3rd_row(self, y_off):
# start after first rails
x_off = self.rail_1_start_x + self.overall_rail_1_gap
# This prevents some M2 outputs from overlapping (hack)
x_off += self.inv1.width
# input: WE, clk_bar, CS output: w_en_bar
self.w_en_bar_offset = vector(x_off, y_off)
self.w_en_bar=self.add_inst(name="nand3_w_en_bar",
mod=self.nand3,
offset=self.w_en_bar_offset)
self.connect_inst(["clk_bar", "we", "cs", "w_en_bar", "vdd", "gnd"])
x_off += self.nand3.width
# input: w_en_bar, output: pre_w_en
self.pre_w_en_offset = vector(x_off, y_off)
self.pre_w_en=self.add_inst(name="inv_pre_w_en",
mod=self.inv1,
offset=self.pre_w_en_offset)
self.connect_inst(["w_en_bar", "pre_w_en", "vdd", "gnd"])
x_off += self.inv1.width
# BUFFER INVERTERS FOR W_EN
self.pre_w_en_bar_offset = vector(x_off, y_off)
self.pre_w_en_bar=self.add_inst(name="inv_pre_w_en_bar",
mod=self.inv1,
offset=self.pre_w_en_bar_offset)
self.connect_inst(["pre_w_en", "pre_w_en_bar", "vdd", "gnd"])
x_off += self.inv1.width
self.w_en_offset = vector(x_off, y_off)
self.w_en=self.add_inst(name="inv_w_en2",
mod=self.inv1,
offset=self.w_en_offset)
self.connect_inst(["pre_w_en_bar", "w_en", "vdd", "gnd"])
#x_off += self.inv1.width
self.row_3_width = x_off
def add_control_routing(self):
""" Route the vertical rails for internal control signals """
control_rail_height = max(3 * self.inv1.height, self.msf_offset.y)
for i in range(self.num_rails_1):
offset = vector(self.rail_1_start_x + (i+1) * self.m2_pitch,0)
if self.rail_1_names[i] in ["clk_buf", "clk_bar", "vdd", "gnd"]:
self.add_layout_pin(text=self.rail_1_names[i],
layer="metal2",
offset=offset,
width=drc["minwidth_metal2"],
height=control_rail_height)
else:
# just for LVS correspondence...
self.add_label_pin(text=self.rail_1_names[i],
layer="metal2",
offset=offset,
width=drc["minwidth_metal2"],
height=control_rail_height)
self.rail_1_x_offsets[self.rail_1_names[i]]=offset.x + 0.5*drc["minwidth_metal2"] # center offset
# pins are in order ["oeb","csb","web"] # 0 1 2
self.connect_rail_from_left_m2m3(self.msf_inst,"dout_bar[0]","oe")
self.connect_rail_from_left_m2m3(self.msf_inst,"dout[0]","oe_bar")
self.connect_rail_from_left_m2m3(self.msf_inst,"dout_bar[1]","cs")
self.connect_rail_from_left_m2m3(self.msf_inst,"dout_bar[2]","we")
# Connect the gnd and vdd of the control
gnd_pins = self.msf_inst.get_pins("gnd")
for p in gnd_pins:
if p.layer != "metal2":
continue
gnd_pin = p.rc()
gnd_rail_position = vector(self.rail_1_x_offsets["gnd"], gnd_pin.y)
self.add_wire(("metal3","via2","metal2"),[gnd_pin, gnd_rail_position, gnd_rail_position - vector(0,self.m2_pitch)])
self.add_via(layers=("metal2","via2","metal3"),
offset=gnd_pin + self.m2m3_via_offset,
rotate=90)
vdd_pins = self.msf_inst.get_pins("vdd")
for p in vdd_pins:
if p.layer != "metal1":
continue
clk_vdd_position = vector(p.bc().x,self.clk_buf.get_pin("vdd").uy())
self.add_path("metal1",[p.bc(),clk_vdd_position])
self.rail_2_start_x = max (self.row_1_width, self.row_2_width, self.row_3_width)
for i in range(self.num_rails_2):
offset = vector(self.rail_2_start_x + i * self.m1_pitch, 0)
self.add_rect(layer="metal1",
offset=offset,
width=drc["minwidth_metal1"],
height=self.logic_height)
self.rail_2_x_offsets[self.rail_2_names[i]]=offset.x + 0.5*drc["minwidth_metal1"] # center offset
self.rail_2_end_x = self.rail_2_start_x + (self.num_rails_2+1) * self.m2_pitch
def add_rblk_routing(self):
""" Connect the logic for the rblk generation """
self.connect_rail_from_right(self.rblk_bar,"A","clk_bar")
self.connect_rail_from_right(self.rblk_bar,"B","oe")
self.connect_rail_from_right(self.rblk_bar,"C","cs")
# Connect the NAND3 output to the inverter
# The pins are assumed to extend all the way to the cell edge
rblk_bar_pin = self.rblk_bar.get_pin("Z").ur()
inv_in_pin = self.rblk.get_pin("A").ll()
mid1 = vector(inv_in_pin.x,rblk_bar_pin.y)
self.add_path("metal1",[rblk_bar_pin,mid1,inv_in_pin])
# Connect the output to the RBL
rblk_pin = self.rblk.get_pin("Z").rc()
rbl_in_pin = self.rbl.get_pin("en").lc()
mid1 = vector(rblk_pin.x,rbl_in_pin.y)
self.add_path("metal1",[rblk_pin,mid1,rbl_in_pin])
def connect_rail_from_right(self,inst, pin, rail):
""" Helper routine to connect an unrotated/mirrored oriented instance to the rails """
in_pin = inst.get_pin(pin).lc()
rail_position = vector(self.rail_1_x_offsets[rail], in_pin.y)
self.add_wire(("metal1","via1","metal2"),[in_pin, rail_position, rail_position - vector(0,self.m2_pitch)])
def connect_rail_from_right_m2m3(self,inst, pin, rail):
""" Helper routine to connect an unrotated/mirrored oriented instance to the rails """
in_pin = inst.get_pin(pin).lc()
rail_position = vector(self.rail_1_x_offsets[rail], in_pin.y)
self.add_wire(("metal3","via2","metal2"),[in_pin, rail_position, rail_position - vector(0,self.m2_pitch)])
# Bring it up to M2 for M2/M3 routing
self.add_via(layers=("metal1","via1","metal2"),
offset=in_pin + self.m1m2_via_offset,
rotate=90)
self.add_via(layers=("metal2","via2","metal3"),
offset=in_pin + self.m2m3_via_offset,
rotate=90)
def connect_rail_from_left(self,inst, pin, rail):
""" Helper routine to connect an unrotated/mirrored oriented instance to the rails """
in_pin = inst.get_pin(pin).rc()
rail_position = vector(self.rail_1_x_offsets[rail], in_pin.y)
self.add_wire(("metal1","via1","metal2"),[in_pin, rail_position, rail_position - vector(0,self.m2_pitch)])
self.add_via(layers=("metal1","via1","metal2"),
offset=in_pin + self.m1m2_via_offset,
rotate=90)
def connect_rail_from_left_m2m3(self,inst, pin, rail):
""" Helper routine to connect an unrotated/mirrored oriented instance to the rails """
in_pin = inst.get_pin(pin).rc()
rail_position = vector(self.rail_1_x_offsets[rail], in_pin.y)
self.add_wire(("metal3","via2","metal2"),[in_pin, rail_position, rail_position - vector(0,self.m2_pitch)])
# This via is needed for clk_bar, but is extraneous for the output signals
self.add_via(layers=("metal1","via1","metal2"),
offset=in_pin + self.m1m2_via_offset,
rotate=90)
self.add_via(layers=("metal2","via2","metal3"),
offset=in_pin + self.m2m3_via_offset,
rotate=90)
def add_wen_routing(self):
self.connect_rail_from_right(self.w_en_bar,"A","clk_bar")
self.connect_rail_from_right(self.w_en_bar,"B","we")
self.connect_rail_from_right(self.w_en_bar,"C","cs")
# Connect the NAND3 output to the inverter
# The pins are assumed to extend all the way to the cell edge
w_en_bar_pin = self.w_en_bar.get_pin("Z").ur()
inv_in_pin = self.pre_w_en.get_pin("A").ll()
mid1 = vector(inv_in_pin.x,w_en_bar_pin.y)
self.add_path("metal1",[w_en_bar_pin,mid1,inv_in_pin])
def add_trien_routing(self):
self.connect_rail_from_right(self.tri_en,"A","clk_buf")
self.connect_rail_from_right(self.tri_en,"B","oe_bar")
self.connect_rail_from_right_m2m3(self.tri_en_bar,"A","clk_bar")
self.connect_rail_from_right_m2m3(self.tri_en_bar,"B","oe")
def add_sen_routing(self):
rbl_out_pin = self.rbl.get_pin("out").ul()
in_pin = self.pre_s_en_bar.get_pin("A").rc()
mid1 = vector(rbl_out_pin.x,in_pin.y)
self.add_path("metal1",[rbl_out_pin,mid1,in_pin])
#s_en_pin = self.s_en.get_pin("Z").lc()
def add_clk_routing(self):
""" Route the clk and clk_bar signal internally """
# clk_buf
clk_buf_pin = self.clk_buf.get_pin("Z").rc()
clk_buf_rail_position = vector(self.rail_1_x_offsets["clk_buf"], clk_buf_pin.y)
self.add_wire(("metal1","via1","metal2"),[clk_buf_pin, clk_buf_rail_position, clk_buf_rail_position - vector(0,self.m2_pitch)])
# clk_bar
self.connect_rail_from_left_m2m3(self.clk_bar,"Z","clk_bar")
# clk_buf to msf control flops
msf_clk_pin = self.msf_inst.get_pin("clk").bc()
mid1 = msf_clk_pin - vector(0,self.m2_pitch)
clk_buf_rail_position = vector(self.rail_1_x_offsets["clk_buf"], mid1.y)
# route on M2 to allow vdd connection
self.add_wire(("metal2","via1","metal1"),[msf_clk_pin, mid1, clk_buf_rail_position])
def connect_right_pin_to_output_pin(self, inst, pin_name, out_name):
""" Create an output pin on the bottom side from the pin of a given instance. """
out_pin = inst.get_pin(pin_name).ur()
self.add_via(layers=("metal1","via1","metal2"),
offset=out_pin + vector(self.m1m2_via.height,-self.m1m2_via.first_layer_width) - self.m1m2_offset_fix,
rotate=90)
self.add_layout_pin(text=out_name,
layer="metal2",
offset=out_pin.scale(1,0),
height=out_pin.y)
def connect_left_pin_to_output_pin(self, inst, pin_name, out_name):
""" Create an output pin on the bottom side from the pin of a given instance. """
out_pin = inst.get_pin(pin_name).ul()
self.add_via(layers=("metal1","via1","metal2"),
offset=out_pin + vector(self.m1m2_via.height,-self.m1m2_via.first_layer_width) - self.m1m2_offset_fix,
rotate=90)
self.add_layout_pin(text=out_name,
layer="metal2",
offset=out_pin.scale(1,0),
height=out_pin.y)
def add_output_routing(self):
""" Output pin routing """
self.connect_right_pin_to_output_pin(self.tri_en, "Z", "tri_en")
self.connect_right_pin_to_output_pin(self.tri_en_bar, "Z", "tri_en_bar")
self.connect_right_pin_to_output_pin(self.w_en, "Z", "w_en")
self.connect_left_pin_to_output_pin(self.s_en, "Z", "s_en")
def add_supply_routing(self):
rows_start = self.rail_1_start_x + self.overall_rail_1_gap
rows_end = max(self.row_1_width,self.row_2_width,self.row_3_width)
vdd_rail_position = vector(self.rail_1_x_offsets["vdd"], 0)
well_width = drc["minwidth_well"]
# M1 gnd rail from inv1 to max
start_offset = self.clk_inv1.get_pin("gnd").lc()
row1_gnd_end_offset = vector(rows_end,start_offset.y)
self.add_path("metal1",[start_offset,row1_gnd_end_offset])
rail_position = vector(self.rail_1_x_offsets["gnd"], start_offset.y)
self.add_wire(("metal1","via1","metal2"),[vector(rows_start,start_offset.y), rail_position, rail_position + vector(0,self.m2_pitch)])
# also add a well + around the rail
self.add_rect(layer="pwell",
offset=vector(rows_start,start_offset.y),
width=rows_end-rows_start,
height=well_width)
self.add_rect(layer="vtg",
offset=vector(rows_start,start_offset.y),
width=rows_end-rows_start,
height=well_width)
# M1 vdd rail from inv1 to max
start_offset = self.clk_inv1.get_pin("vdd").lc()
row1_vdd_end_offset = vector(rows_end,start_offset.y)
self.add_path("metal1",[start_offset,row1_vdd_end_offset])
rail_position = vector(self.rail_1_x_offsets["vdd"], start_offset.y)
self.add_wire(("metal1","via1","metal2"),[vector(rows_start,start_offset.y), rail_position, rail_position - vector(0,self.m2_pitch)])
# also add a well +- around the rail
self.add_rect(layer="nwell",
offset=vector(rows_start,start_offset.y)-vector(0,0.5*well_width),
width=rows_end-rows_start,
height=well_width)
self.add_rect(layer="vtg",
offset=vector(rows_start,start_offset.y)-vector(0,0.5*well_width),
width=rows_end-rows_start,
height=well_width)
# M1 gnd rail from inv1 to max
start_offset = vector(rows_start, self.tri_en.get_pin("gnd").lc().y)
row3_gnd_end_offset = vector(rows_end,start_offset.y)
self.add_path("metal1",[start_offset,row3_gnd_end_offset])
rail_position = vector(self.rail_1_x_offsets["gnd"], start_offset.y)
self.add_wire(("metal1","via1","metal2"),[vector(rows_start,start_offset.y), rail_position, rail_position - vector(0,self.m2_pitch)])
# also add a well +- around the rail
self.add_rect(layer="pwell",
offset=vector(rows_start,start_offset.y)-vector(0,0.5*well_width),
width=rows_end-rows_start,
height=well_width)
self.add_rect(layer="vtg",
offset=vector(rows_start,start_offset.y)-vector(0,0.5*well_width),
width=rows_end-rows_start,
height=well_width)
# M1 vdd rail from inv1 to max
start_offset = vector(rows_start, self.w_en_bar.get_pin("vdd").lc().y)
row3_vdd_end_offset = vector(rows_end,start_offset.y)
self.add_path("metal1",[start_offset,row3_vdd_end_offset])
rail_position = vector(self.rail_1_x_offsets["vdd"], start_offset.y)
self.add_wire(("metal1","via1","metal2"),[vector(rows_start,start_offset.y), rail_position, rail_position - vector(0,self.m2_pitch)])
# Now connect the vdd and gnd rails between the replica bitline and the control logic
(rbl_row3_gnd,rbl_row1_gnd) = self.rbl.get_pins("gnd")
(rbl_row3_vdd,rbl_row1_vdd) = self.rbl.get_pins("vdd")
self.add_path("metal1",[row1_gnd_end_offset,rbl_row1_gnd.lc()])
self.add_path("metal1",[row1_vdd_end_offset,rbl_row1_vdd.lc()])
self.add_path("metal1",[row3_gnd_end_offset,rbl_row3_gnd.lc()])
# row 3 may have a jog due to unequal row heights, so force the full overlap at the end
self.add_path("metal1",[row3_vdd_end_offset - vector(self.m1_pitch,0),row3_vdd_end_offset,rbl_row3_vdd.lc()])
# also add a well - around the rail
self.add_rect(layer="nwell",
offset=vector(rows_start,start_offset.y)-vector(0,well_width),
width=rows_end-rows_start,
height=well_width)
self.add_rect(layer="vtg",
offset=vector(rows_start,start_offset.y)-vector(0,well_width),
width=rows_end-rows_start,
height=well_width)
def add_lvs_correspondence_points(self):
""" This adds some points for easier debugging if LVS goes wrong.
These should probably be turned off by default though, since extraction
will show these as ports in the extracted netlist.
"""
pin=self.clk_inv1.get_pin("Z")
self.add_label_pin(text="clk1_bar",
layer="metal1",
offset=pin.ll(),
height=pin.height(),
width=pin.width())
pin=self.clk_inv2.get_pin("Z")
self.add_label_pin(text="clk2",
layer="metal1",
offset=pin.ll(),
height=pin.height(),
width=pin.width())