OpenRAM/compiler/modules/pinv.py

363 lines
16 KiB
Python

# See LICENSE for licensing information.
#
# Copyright (c) 2016-2024 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import operator
from math import ceil
from openram import debug
from openram.base import vector
from openram.base import logical_effort
from openram.base.utils import round_to_grid
from openram.base.errors import drc_error
from openram.sram_factory import factory
from openram.tech import drc, parameter, spice
from openram.tech import cell_properties as cell_props
from openram import OPTS
from .pgate import *
class pinv(pgate):
"""
Pinv generates gds of a parametrically sized inverter. The
size is specified as the drive size (relative to minimum NMOS) and
a beta value for choosing the pmos size. The inverter's cell
height is usually the same as the 6t library cell and is measured
from center of rail to rail.
"""
# binning %error tracker
bin_count = 0
bin_error = 0
def __init__(self, name, size=1, beta=parameter["beta"], height=None, add_wells=True):
debug.info(2,
"creating pinv structure {0} with size of {1}".format(name,
size))
self.add_comment("size: {}".format(size))
self.size = size
debug.check(self.size >= 1, "Must have a size greater than or equal to 1.")
self.nmos_size = size
self.pmos_size = beta * size
self.beta = beta
super().__init__(name, height, add_wells)
def create_netlist(self):
""" Calls all functions related to the generation of the netlist """
self.add_pins()
self.determine_tx_mults()
self.add_ptx()
self.create_ptx()
def create_layout(self):
""" Calls all functions related to the generation of the layout """
self.place_ptx()
if self.add_wells:
self.add_well_contacts()
self.determine_width()
self.extend_wells()
self.route_input_gate(self.pmos_inst,
self.nmos_inst,
self.output_pos.y,
"A",
position="farleft")
self.route_outputs()
self.route_supply_rails()
self.connect_rails()
self.add_boundary()
def add_pins(self):
""" Adds pins for spice netlist """
pin_list = ["A", "Z", "vdd", "gnd"]
dir_list = ["INPUT", "OUTPUT", "POWER", "GROUND"]
self.add_pin_list(pin_list, dir_list)
def determine_tx_mults(self):
"""
Determines the number of fingers needed to achieve the size within
the height constraint. This may fail if the user has a tight height.
"""
# This may make the result differ when the layout is created...
if OPTS.netlist_only:
self.tx_mults = 1
self.nmos_width = self.nmos_size * drc("minwidth_tx")
self.pmos_width = self.pmos_size * drc("minwidth_tx")
if cell_props.ptx.bin_spice_models:
(self.nmos_width, self.tx_mults) = pgate.best_bin("nmos", self.nmos_width)
(self.pmos_width, self.tx_mults) = pgate.best_bin("pmos", self.pmos_width)
return
# Do a quick sanity check and bail if unlikely feasible height
# Sanity check. can we make an inverter in the height
# with minimum tx sizes?
# Assume we need 3 metal 1 pitches (2 power rails, one
# between the tx for the drain)
# plus the tx height
nmos = factory.create(module_type="ptx",
tx_type="nmos")
pmos = factory.create(module_type="ptx",
width=drc("minwidth_tx"),
tx_type="pmos")
tx_height = nmos.poly_height + pmos.poly_height
# rotated m1 pitch or poly to active spacing
min_channel = max(self.poly_contact.width + self.m1_space,
self.poly_contact.width + 2 * self.poly_to_active)
total_height = tx_height + min_channel + 2 * self.top_bottom_space
# debug.check(self.height > total_height,
# "Cell height {0} too small for simple min height {1}.".format(self.height,
# total_height))
if total_height > self.height:
msg = "Cell height {0} too small for simple min height {1}.".format(self.height, total_height)
raise drc_error(msg)
# Determine the height left to the transistors to determine
# the number of fingers
tx_height_available = self.height - min_channel - 2 * self.top_bottom_space
# Divide the height in half. Could divide proportional to beta,
# but this makes connecting wells of multiple cells easier.
# Subtract the poly space under the rail of the tx
nmos_height_available = 0.5 * tx_height_available - 0.5 * self.poly_space
pmos_height_available = 0.5 * tx_height_available - 0.5 * self.poly_space
debug.info(2,
"Height avail {0:.4f} PMOS {1:.4f} NMOS {2:.4f}".format(tx_height_available,
nmos_height_available,
pmos_height_available))
# Determine the number of mults for each to fit width
# into available space
if not cell_props.ptx.bin_spice_models:
self.nmos_width = self.nmos_size * drc("minwidth_tx")
self.pmos_width = self.pmos_size * drc("minwidth_tx")
nmos_required_mults = max(int(ceil(self.nmos_width / nmos_height_available)), 1)
pmos_required_mults = max(int(ceil(self.pmos_width / pmos_height_available)), 1)
# The mults must be the same for easy connection of poly
self.tx_mults = max(nmos_required_mults, pmos_required_mults)
# Recompute each mult width and check it isn't too small
# This could happen if the height is narrow and the size is small
# User should pick a bigger size to fix it...
# We also need to round the width to the grid or we will end up
# with LVS property mismatch errors when fingers are not a grid
# length and get rounded in the offset geometry.
self.nmos_width = round_to_grid(self.nmos_width / self.tx_mults)
# debug.check(self.nmos_width >= drc("minwidth_tx"),
# "Cannot finger NMOS transistors to fit cell height.")
if self.nmos_width < drc("minwidth_tx"):
raise drc_error("Cannot finger NMOS transistors to fit cell height.")
self.pmos_width = round_to_grid(self.pmos_width / self.tx_mults)
#debug.check(self.pmos_width >= drc("minwidth_tx"),
# "Cannot finger PMOS transistors to fit cell height.")
if self.pmos_width < drc("minwidth_tx"):
raise drc_error("Cannot finger NMOS transistors to fit cell height.")
else:
self.nmos_width = self.nmos_size * drc("minwidth_tx")
self.pmos_width = self.pmos_size * drc("minwidth_tx")
nmos_bins = self.scaled_bins("nmos", self.nmos_width)
pmos_bins = self.scaled_bins("pmos", self.pmos_width)
valid_pmos = []
for bin in pmos_bins:
if abs(self.bin_accuracy(self.pmos_width, bin[0])) > OPTS.accuracy_requirement and abs(self.bin_accuracy(self.pmos_width, bin[0])) <= 1:
valid_pmos.append(bin)
valid_pmos.sort(key = operator.itemgetter(1))
valid_nmos = []
for bin in nmos_bins:
if abs(self.bin_accuracy(self.nmos_width, bin[0])) > OPTS.accuracy_requirement and abs(self.bin_accuracy(self.nmos_width, bin[0])) <= 1:
valid_nmos.append(bin)
valid_nmos.sort(key = operator.itemgetter(1))
for bin in valid_pmos:
if bin[0]/bin[1] < pmos_height_available:
self.pmos_width = bin[0]/bin[1]
pmos_mults = bin[1]
break
for bin in valid_nmos:
if bin[0]/bin[1] < nmos_height_available:
self.nmos_width = bin[0]/bin[1]
nmos_mults = bin[1]
break
self.tx_mults = max(pmos_mults, nmos_mults)
debug.info(2, "prebinning {0} tx, target: {4}, found {1} x {2} = {3}".format("pmos", self.pmos_width, pmos_mults, self.pmos_width * pmos_mults, self.pmos_size * drc("minwidth_tx")))
debug.info(2, "prebinning {0} tx, target: {4}, found {1} x {2} = {3}".format("nmos", self.nmos_width, nmos_mults, self.nmos_width * nmos_mults, self.nmos_size * drc("minwidth_tx")))
pinv.bin_count += 1
pinv.bin_error += abs(((self.pmos_width * pmos_mults) - (self.pmos_size * drc("minwidth_tx")))/(self.pmos_size * drc("minwidth_tx")))
pinv.bin_count += 1
pinv.bin_error += abs(((self.nmos_width * nmos_mults) - (self.nmos_size * drc("minwidth_tx")))/(self.nmos_size * drc("minwidth_tx")))
debug.info(2, "pinv bin count: {0} pinv bin error: {1} percent error {2}".format(pinv.bin_count, pinv.bin_error, pinv.bin_error/pinv.bin_count))
def add_ptx(self):
""" Create the PMOS and NMOS transistors. """
self.nmos = factory.create(module_type="ptx",
width=self.nmos_width,
mults=self.tx_mults,
tx_type="nmos",
add_source_contact=self.route_layer,
add_drain_contact=self.route_layer,
connect_poly=True,
connect_drain_active=True)
self.pmos = factory.create(module_type="ptx",
width=self.pmos_width,
mults=self.tx_mults,
tx_type="pmos",
add_source_contact=self.route_layer,
add_drain_contact=self.route_layer,
connect_poly=True,
connect_drain_active=True)
def create_ptx(self):
"""
Create the PMOS and NMOS netlist.
"""
self.pmos_inst = self.add_inst(name="pinv_pmos",
mod=self.pmos)
self.connect_inst(["Z", "A", "vdd", "vdd"])
self.nmos_inst = self.add_inst(name="pinv_nmos",
mod=self.nmos)
self.connect_inst(["Z", "A", "gnd", "gnd"])
def place_ptx(self):
"""
Place PMOS and NMOS to the layout at the upper-most and lowest position
to provide maximum routing in channel
"""
# place PMOS so it is half a poly spacing down from the top
self.pmos_pos = self.pmos.active_offset.scale(1, 0) \
+ vector(0,
self.height - self.pmos.active_height - self.top_bottom_space)
self.pmos_inst.place(self.pmos_pos)
# place NMOS so that it is half a poly spacing up from the bottom
self.nmos_pos = self.nmos.active_offset.scale(1, 0) \
+ vector(0, self.top_bottom_space)
self.nmos_inst.place(self.nmos_pos)
# Output position will be in between the PMOS and NMOS drains
pmos_drain_pos = self.pmos_inst.get_pin("D").ll()
nmos_drain_pos = self.nmos_inst.get_pin("D").ul()
self.output_pos = vector(0, 0.5 * (pmos_drain_pos.y + nmos_drain_pos.y))
def route_outputs(self):
"""
Route the output (drains) together.
Optionally, routes output to edge.
"""
# Get the drain pins
nmos_drain_pin = self.nmos_inst.get_pin("D")
pmos_drain_pin = self.pmos_inst.get_pin("D")
# Pick point at right most of NMOS and connect down to PMOS
nmos_drain_pos = nmos_drain_pin.bc()
pmos_drain_pos = vector(nmos_drain_pos.x, pmos_drain_pin.uc().y)
self.add_path(self.route_layer, [nmos_drain_pos, pmos_drain_pos])
# Remember the mid for the output
mid_drain_offset = vector(nmos_drain_pos.x, self.output_pos.y)
# This leaves the output as an internal pin (min sized)
output_offset = mid_drain_offset + vector(0.5 * self.route_layer_width, 0)
self.add_layout_pin_rect_center(text="Z",
layer=self.route_layer,
offset=output_offset)
def add_well_contacts(self):
""" Add n/p well taps to the layout and connect to supplies """
self.add_nwell_contact(self.pmos, self.pmos_pos)
self.add_pwell_contact(self.nmos, self.nmos_pos)
def connect_rails(self):
""" Connect the nmos and pmos to its respective power rails """
self.connect_pin_to_rail(self.nmos_inst, "S", "gnd")
self.connect_pin_to_rail(self.pmos_inst, "S", "vdd")
def analytical_power(self, corner, load):
"""Returns dynamic and leakage power. Results in nW"""
c_eff = self.calculate_effective_capacitance(load)
freq = spice["default_event_frequency"]
power_dyn = self.calc_dynamic_power(corner, c_eff, freq)
power_leak = spice["inv_leakage"]
total_power = self.return_power(power_dyn, power_leak)
return total_power
def calculate_effective_capacitance(self, load):
"""Computes effective capacitance. Results in fF"""
c_load = load
# In fF
c_para = spice["min_tx_drain_c"] * (self.nmos_size / parameter["min_tx_size"])
transition_prob = 0.5
return transition_prob * (c_load + c_para)
def input_load(self):
"""
Return the relative capacitance of the gate connection in generic capacitive
units relative to the minimum width of a transistor
"""
return self.nmos_size + self.pmos_size
def get_stage_effort(self, cout, inp_is_rise=True):
"""
Returns an object representing the parameters for delay in tau units.
Optional is_rise refers to the input direction rise/fall.
Input inverted by this stage.
"""
parasitic_delay = 1
return logical_effort(self.name,
self.size,
self.input_load(),
cout,
parasitic_delay,
not inp_is_rise)
def build_graph(self, graph, inst_name, port_nets):
"""
Adds edges based on inputs/outputs.
Overrides base class function.
"""
self.add_graph_edges(graph, port_nets)
def is_non_inverting(self):
"""Return input to output polarity for module"""
return False
def get_on_resistance(self):
"""On resistance of pinv, defined by single nmos"""
is_nchannel = True
stack = 1
is_cell = False
return self.tr_r_on(self.nmos_width, is_nchannel, stack, is_cell)
def get_input_capacitance(self):
"""Input cap of input, passes width of gates to gate cap function"""
return self.gate_c(self.nmos_width+self.pmos_width)
def get_intrinsic_capacitance(self):
"""Get the drain capacitances of the TXs in the gate."""
nmos_stack = 1
nmos_drain_c = self.drain_c_(self.nmos_width*self.tx_mults,
nmos_stack,
self.tx_mults)
pmos_drain_c = self.drain_c_(self.pmos_width*self.tx_mults,
1,
self.tx_mults)
return nmos_drain_c + pmos_drain_c