Altering control logic for read ports and write ports, by including only read or write specific circuitry. Altering replica bitline layout to support multiport

This commit is contained in:
Michael Timothy Grimes 2018-09-25 20:00:25 -07:00
parent 934959952b
commit f1560375fc
4 changed files with 157 additions and 102 deletions

View File

@ -18,14 +18,18 @@ class control_logic(design.design):
Dynamically generated Control logic for the total SRAM circuit.
"""
def __init__(self, num_rows):
def __init__(self, num_rows, port="rw"):
""" Constructor """
design.design.__init__(self, "control_logic")
debug.info(1, "Creating {}".format(self.name))
self.num_rows = num_rows
self.total_write = OPTS.num_rw_ports + OPTS.num_w_ports
self.total_read = OPTS.num_rw_ports + OPTS.num_r_ports
self.port = port
if self.port == "r":
self.num_control_signals = 1
else:
self.num_control_signals = 2
self.create_netlist()
if not OPTS.netlist_only:
@ -43,7 +47,7 @@ class control_logic(design.design):
self.place_modules()
self.route_all()
self.add_lvs_correspondence_points()
#self.add_lvs_correspondence_points()
self.DRC_LVS()
@ -63,7 +67,7 @@ class control_logic(design.design):
dff = dff_inv()
dff_height = dff.height
self.ctrl_dff_array = dff_inv_array(rows=1+self.total_write,columns=1)
self.ctrl_dff_array = dff_inv_array(rows=self.num_control_signals,columns=1)
self.add_mod(self.ctrl_dff_array)
self.nand2 = pnand2(height=dff_height)
@ -83,39 +87,47 @@ class control_logic(design.design):
self.inv8 = pinv(size=16, height=dff_height)
self.add_mod(self.inv8)
from importlib import reload
c = reload(__import__(OPTS.replica_bitline))
replica_bitline = getattr(c, OPTS.replica_bitline)
# FIXME: These should be tuned according to the size!
delay_stages = 4 # Must be non-inverting
delay_fanout = 3 # This can be anything >=2
bitcell_loads = int(math.ceil(self.num_rows / 5.0))
self.replica_bitline = replica_bitline(delay_stages, delay_fanout, bitcell_loads)
self.add_mod(self.replica_bitline)
if (self.port == "rw") or (self.port == "r"):
from importlib import reload
c = reload(__import__(OPTS.replica_bitline))
replica_bitline = getattr(c, OPTS.replica_bitline)
# FIXME: These should be tuned according to the size!
delay_stages = 4 # Must be non-inverting
delay_fanout = 3 # This can be anything >=2
bitcell_loads = int(math.ceil(self.num_rows / 5.0))
self.replica_bitline = replica_bitline(delay_stages, delay_fanout, bitcell_loads)
self.add_mod(self.replica_bitline)
def setup_signal_busses(self):
""" Setup bus names, determine the size of the busses etc """
# List of input control signals
self.input_list =["csb"]
for port in range(self.total_write):
self.input_list.append("web{}".format(port))
self.dff_output_list =["cs_bar", "cs"]
for port in range(self.total_write):
self.dff_output_list.append("we_bar{}".format(port))
self.dff_output_list.append("we{}".format(port))
if self.port == "r":
self.input_list =["csb"]
else:
self.input_list =["csb", "web"]
if self.port == "r":
self.dff_output_list =["cs_bar", "cs"]
else:
self.dff_output_list =["cs_bar", "cs", "we_bar", "we"]
# list of output control signals (for making a vertical bus)
self.internal_bus_list = ["clk_buf", "clk_buf_bar", "we", "cs"]
if self.port == "r":
self.internal_bus_list = ["clk_buf", "clk_buf_bar", "cs"]
else:
self.internal_bus_list = ["clk_buf", "clk_buf_bar", "we", "cs"]
# leave space for the bus plus one extra space
self.internal_bus_width = (len(self.internal_bus_list)+1)*self.m2_pitch
# Outputs to the bank
self.output_list = ["s_en"]
for port in range(self.total_write):
self.output_list.append("w_en{}".format(port))
if self.port == "r":
self.output_list = ["s_en"]
elif self.port == "w":
self.output_list = ["w_en"]
else:
self.output_list = ["s_en", "w_en"]
self.output_list.append("clk_buf_bar")
self.output_list.append("clk_buf")
@ -133,14 +145,13 @@ class control_logic(design.design):
def create_modules(self):
""" Create all the modules """
self.create_dffs()
self.create_clk_row()
self.create_we_row()
# self.create_trien_row()
# self.create_trien_bar_row()
self.create_rbl_in_row()
self.create_sen_row()
self.create_rbl()
self.create_clk_row()
if (self.port == "rw") or (self.port == "w"):
self.create_we_row()
if (self.port == "rw") or (self.port == "r"):
self.create_rbl_in_row()
self.create_sen_row()
self.create_rbl()
def place_modules(self):
@ -149,38 +160,44 @@ class control_logic(design.design):
# and add the vdd/gnd pins
self.row_end_inst = []
# Add the control flops on the left of the bus
self.place_dffs()
row = 0
# Add the logic on the right of the bus
self.place_clk_row(row=0) # clk is a double-high cell
self.place_we_row(row=2)
# self.place_trien_row(row=3)
# self.place_trien_bar_row(row=4)
self.place_rbl_in_row(row=3)
self.place_sen_row(row=4)
self.place_rbl(row=5)
self.place_clk_row(row=row) # clk is a double-high cell
row += 2
if (self.port == "rw") or (self.port == "w"):
self.place_we_row(row=row)
pre_height = self.w_en_inst.uy()
control_center_y = self.w_en_inst.by()
row += 1
if (self.port == "rw") or (self.port == "r"):
self.place_rbl_in_row(row=row)
self.place_sen_row(row=row+1)
self.place_rbl(row=row+2)
pre_height = self.rbl_inst.uy()
control_center_y = self.rbl_inst.by()
# This offset is used for placement of the control logic in
# the SRAM level.
self.control_logic_center = vector(self.ctrl_dff_inst.rx(), self.rbl_inst.by())
# This offset is used for placement of the control logic in the SRAM level.
self.control_logic_center = vector(self.ctrl_dff_inst.rx(), control_center_y)
# Extra pitch on top and right
self.height = self.rbl_inst.uy() + self.m3_pitch
self.height = pre_height + self.m3_pitch
# Max of modules or logic rows
self.width = max(self.rbl_inst.rx(), max([inst.rx() for inst in self.row_end_inst])) + self.m2_pitch
if (self.port == "rw") or (self.port == "r"):
self.width = max(self.rbl_inst.rx(), max([inst.rx() for inst in self.row_end_inst])) + self.m2_pitch
else:
self.width = max([inst.rx() for inst in self.row_end_inst]) + self.m2_pitch
def route_all(self):
""" Routing between modules """
self.route_dffs()
#self.route_trien()
#self.route_trien_bar()
self.route_rbl_in()
self.route_wen()
self.route_sen()
if (self.port == "rw") or (self.port == "w"):
self.route_wen()
if (self.port == "rw") or (self.port == "r"):
self.route_rbl_in()
self.route_sen()
self.route_clk()
self.route_supply()
@ -217,7 +234,7 @@ class control_logic(design.design):
def create_rbl_in_row(self):
self.rbl_in_bar_inst=self.add_inst(name="nand3_rbl_in_bar",
self.rbl_in_bar_inst=self.add_inst(name="nand2_rbl_in_bar",
mod=self.nand2)
self.connect_inst(["clk_buf_bar", "cs", "rbl_in_bar", "vdd", "gnd"])
@ -277,7 +294,11 @@ class control_logic(design.design):
def route_dffs(self):
""" Route the input inverters """
dff_out_map = zip(["dout_bar[{}]".format(i) for i in range(3)], ["cs", "we"])
if self.port == "r":
control_inputs = ["cs"]
else:
control_inputs = ["cs", "we"]
dff_out_map = zip(["dout_bar[{}]".format(i) for i in range(2*self.num_control_signals - 1)], control_inputs)
self.connect_vertical_bus(dff_out_map, self.ctrl_dff_inst, self.rail_offsets)
# Connect the clock rail to the other clock rail
@ -290,7 +311,8 @@ class control_logic(design.design):
rotate=90)
self.copy_layout_pin(self.ctrl_dff_inst, "din[0]", "csb")
self.copy_layout_pin(self.ctrl_dff_inst, "din[1]", "web0")
if (self.port == "rw") or (self.port == "w"):
self.copy_layout_pin(self.ctrl_dff_inst, "din[1]", "web")
def create_dffs(self):
@ -317,31 +339,23 @@ class control_logic(design.design):
def create_we_row(self):
# input: WE, CS output: w_en_bar
self.w_en_bar_inst = []
for port in range(self.total_write):
self.w_en_bar_inst.append(self.add_inst(name="nand3_w_en_bar{}".format(port),
mod=self.nand3))
self.connect_inst(["clk_buf_bar", "cs", "we{}".format(port), "w_en_bar{}".format(port), "vdd", "gnd"])
self.w_en_bar_inst = self.add_inst(name="nand3_w_en_bar",
mod=self.nand3)
self.connect_inst(["clk_buf_bar", "cs", "we", "w_en_bar", "vdd", "gnd"])
# input: w_en_bar, output: pre_w_en
self.pre_w_en_inst = []
for port in range(self.total_write):
self.pre_w_en_inst.append(self.add_inst(name="inv_pre_w_en{}".format(port),
mod=self.inv1))
self.connect_inst(["w_en_bar{}".format(port), "pre_w_en{}".format(port), "vdd", "gnd"])
self.pre_w_en_inst = self.add_inst(name="inv_pre_w_en",
mod=self.inv1)
self.connect_inst(["w_en_bar", "pre_w_en", "vdd", "gnd"])
# BUFFER INVERTERS FOR W_EN
self.pre_w_en_bar_inst = []
for port in range(self.total_write):
self.pre_w_en_bar_inst.append(self.add_inst(name="inv_pre_w_en_bar{}".format(port),
mod=self.inv2))
self.connect_inst(["pre_w_en{}".format(port), "pre_w_en_bar{}".format(port), "vdd", "gnd"])
self.pre_w_en_bar_inst = self.add_inst(name="inv_pre_w_en_bar",
mod=self.inv2)
self.connect_inst(["pre_w_en", "pre_w_en_bar", "vdd", "gnd"])
self.w_en_inst = []
for port in range(self.total_write):
self.w_en_inst.append(self.add_inst(name="inv_w_en2_{}".format(port),
mod=self.inv8))
self.connect_inst(["pre_w_en_bar{}".format(port), "w_en{}".format(port), "vdd", "gnd"])
self.w_en_inst = self.add_inst(name="inv_w_en2",
mod=self.inv8)
self.connect_inst(["pre_w_en_bar", "w_en", "vdd", "gnd"])
def place_we_row(self,row):
@ -349,26 +363,26 @@ class control_logic(design.design):
(y_off,mirror)=self.get_offset(row)
w_en_bar_offset = vector(x_off, y_off)
self.w_en_bar_inst[0].place(offset=w_en_bar_offset,
self.w_en_bar_inst.place(offset=w_en_bar_offset,
mirror=mirror)
x_off += self.nand3.width
pre_w_en_offset = vector(x_off, y_off)
self.pre_w_en_inst[0].place(offset=pre_w_en_offset,
self.pre_w_en_inst.place(offset=pre_w_en_offset,
mirror=mirror)
x_off += self.inv1.width
pre_w_en_bar_offset = vector(x_off, y_off)
self.pre_w_en_bar_inst[0].place(offset=pre_w_en_bar_offset,
self.pre_w_en_bar_inst.place(offset=pre_w_en_bar_offset,
mirror=mirror)
x_off += self.inv2.width
w_en_offset = vector(x_off, y_off)
self.w_en_inst[0].place(offset=w_en_offset,
self.w_en_inst.place(offset=w_en_offset,
mirror=mirror)
x_off += self.inv8.width
self.row_end_inst.append(self.w_en_inst[0])
self.row_end_inst.append(self.w_en_inst)
def route_rbl_in(self):
@ -446,19 +460,19 @@ class control_logic(design.design):
def route_wen(self):
wen_map = zip(["A", "B", "C"], ["clk_buf_bar", "cs", "we"])
self.connect_vertical_bus(wen_map, self.w_en_bar_inst[0], self.rail_offsets)
self.connect_vertical_bus(wen_map, self.w_en_bar_inst, self.rail_offsets)
# Connect the NAND3 output to the inverter
# The pins are assumed to extend all the way to the cell edge
w_en_bar_pos = self.w_en_bar_inst[0].get_pin("Z").center()
inv_in_pos = self.pre_w_en_inst[0].get_pin("A").center()
w_en_bar_pos = self.w_en_bar_inst.get_pin("Z").center()
inv_in_pos = self.pre_w_en_inst.get_pin("A").center()
mid1 = vector(inv_in_pos.x,w_en_bar_pos.y)
self.add_path("metal1",[w_en_bar_pos,mid1,inv_in_pos])
self.add_path("metal1",[self.pre_w_en_inst[0].get_pin("Z").center(), self.pre_w_en_bar_inst[0].get_pin("A").center()])
self.add_path("metal1",[self.pre_w_en_bar_inst[0].get_pin("Z").center(), self.w_en_inst[0].get_pin("A").center()])
self.add_path("metal1",[self.pre_w_en_inst.get_pin("Z").center(), self.pre_w_en_bar_inst.get_pin("A").center()])
self.add_path("metal1",[self.pre_w_en_bar_inst.get_pin("Z").center(), self.w_en_inst.get_pin("A").center()])
self.connect_output(self.w_en_inst[0], "Z", "w_en0")
self.connect_output(self.w_en_inst, "Z", "w_en")
def route_sen(self):
rbl_out_pos = self.rbl_inst.get_pin("out").bc()
@ -521,9 +535,9 @@ class control_logic(design.design):
self.add_power_pin("gnd", pin_loc)
self.add_path("metal1", [row_loc, pin_loc])
self.copy_layout_pin(self.rbl_inst,"gnd")
self.copy_layout_pin(self.rbl_inst,"vdd")
if (self.port == "rw") or (self.port == "r"):
self.copy_layout_pin(self.rbl_inst,"gnd")
self.copy_layout_pin(self.rbl_inst,"vdd")
self.copy_layout_pin(self.ctrl_dff_inst,"gnd")
self.copy_layout_pin(self.ctrl_dff_inst,"vdd")

View File

@ -107,7 +107,7 @@ class replica_bitline(design.design):
def create_modules(self):
""" Create all of the module instances in the logical netlist """
total_ports = OPTS.num_rw_ports + OPTS.num_w_ports + OPTS.num_r_ports
self.total_ports = OPTS.num_rw_ports + OPTS.num_w_ports + OPTS.num_r_ports
# This is the threshold detect inverter on the output of the RBL
self.rbl_inv_inst=self.add_inst(name="rbl_inv",
@ -127,10 +127,10 @@ class replica_bitline(design.design):
self.rbc_inst=self.add_inst(name="bitcell",
mod=self.replica_bitcell)
temp = []
for port in range(total_ports):
for port in range(self.total_ports):
temp.append("bl{}[0]".format(port))
temp.append("br{}[0]".format(port))
for port in range(total_ports):
for port in range(self.total_ports):
temp.append("delayed_en")
temp.append("vdd")
temp.append("gnd")
@ -141,11 +141,11 @@ class replica_bitline(design.design):
mod=self.rbl)
temp = []
for port in range(total_ports):
for port in range(self.total_ports):
temp.append("bl{}[0]".format(port))
temp.append("br{}[0]".format(port))
for wl in range(self.bitcell_loads):
for port in range(total_ports):
for port in range(self.total_ports):
temp.append("gnd")
temp.append("vdd")
temp.append("gnd")
@ -169,9 +169,6 @@ class replica_bitline(design.design):
mirror="MX")
self.rbl_inst.place(self.rbl_offset)
def route(self):
@ -201,7 +198,13 @@ class replica_bitline(design.design):
continue
self.add_path("metal1", [pin_right, pin_extension1, pin_extension2])
self.add_power_pin("gnd", pin_extension2)
# for multiport, need to short wordlines to each other so they all connect to gnd
wl_last = self.wl_list[self.total_ports-1]+"[{}]".format(row)
pin_last = self.rbl_inst.get_pin(wl_last)
correct = vector(0.5*drc["minwidth_metal1"], 0)
self.add_path("metal1", [pin.rc()-correct, pin_last.rc()-correct])
def route_supplies(self):
""" Propagate all vdd/gnd pins up to this level for all modules """
@ -265,6 +268,15 @@ class replica_bitline(design.design):
#wl_mid1 = vector(xmid_point,contact_offset.y)
#wl_mid2 = vector(xmid_point,wl_offset.y)
self.add_path("metal1", [wl_offset, wl_mid1, wl_mid2, contact_offset])
# 4. Short wodlines if multiport
wl = self.wl_list[0]
wl_last = self.wl_list[self.total_ports-1]
pin = self.rbc_inst.get_pin(wl)
pin_last = self.rbc_inst.get_pin(wl_last)
correct = vector(0.5*drc["minwidth_metal1"], 0)
self.add_path("metal1", [pin.lc()+correct, pin_last.lc()+correct])
# DRAIN ROUTE
# Route the drain to the vdd rail

View File

@ -51,6 +51,23 @@ class replica_bitline_test(openram_test):
a = replica_bitline.replica_bitline(stages,fanout,rows)
self.local_check(a)
OPTS.num_rw_ports = 1
OPTS.num_w_ports = 1
OPTS.num_r_ports = 1
stages=4
fanout=4
rows=13
debug.info(2, "Testing RBL with {0} FO4 stages, {1} rows".format(stages,rows))
a = replica_bitline.replica_bitline(stages,fanout,rows)
self.local_check(a)
stages=8
rows=100
debug.info(2, "Testing RBL with {0} FO4 stages, {1} rows".format(stages,rows))
a = replica_bitline.replica_bitline(stages,fanout,rows)
self.local_check(a)
globals.end_openram()
# instantiate a copy of the class to actually run the test

View File

@ -24,7 +24,6 @@ class control_logic_test(openram_test):
self.local_check(a)
# check control logic for multi-port
# only layout for 1RW is supported at the moment
OPTS.bitcell = "pbitcell"
OPTS.replica_bitcell = "replica_pbitcell"
OPTS.num_rw_ports = 1
@ -34,6 +33,19 @@ class control_logic_test(openram_test):
debug.info(1, "Testing sample for control_logic for multiport")
a = control_logic.control_logic(num_rows=128)
self.local_check(a)
# Check write-only and read-only control logic
OPTS.num_rw_ports = 1
OPTS.num_w_ports = 1
OPTS.num_r_ports = 1
debug.info(1, "Testing sample for control_logic for multiport, only write control logic")
a = control_logic.control_logic(num_rows=128, port="w")
self.local_check(a)
debug.info(1, "Testing sample for control_logic for multiport, only read control logic")
a = control_logic.control_logic(num_rows=128, port="r")
self.local_check(a)
globals.end_openram()