This commit is contained in:
jcirimel 2020-04-16 16:48:07 -07:00
commit ed54c7ab83
15 changed files with 399 additions and 280 deletions

View File

@ -74,7 +74,7 @@ class design(hierarchy_design):
return pitch
def setup_drc_constants(self):
"""
"""
These are some DRC constants used in many places
in the compiler.
"""

View File

@ -46,7 +46,6 @@ class layout():
except ImportError:
self.pwr_grid_layer = "m3"
############################################################
# GDS layout
############################################################
@ -196,7 +195,7 @@ class layout():
self.insts.append(geometry.instance(name, mod, offset, mirror, rotate))
debug.info(3, "adding instance {}".format(self.insts[-1]))
# This is commented out for runtime reasons
#debug.info(4, "instance list: " + ",".join(x.name for x in self.insts))
# debug.info(4, "instance list: " + ",".join(x.name for x in self.insts))
return self.insts[-1]
def get_inst(self, name):
@ -214,12 +213,14 @@ class layout():
width = drc["minwidth_{}".format(layer)]
if not height:
height = drc["minwidth_{}".format(layer)]
# negative layers indicate "unused" layers in a given technology
lpp = techlayer[layer]
if lpp[0] >= 0:
self.objs.append(geometry.rectangle(lpp, offset, width, height))
return self.objs[-1]
return None
if abs(offset[0]-5.16250)<0.01 and abs(offset[1]-8.70750)<0.01:
import pdb; pdb.set_trace()
self.objs.append(geometry.rectangle(lpp,
offset,
width,
height))
return self.objs[-1]
def add_rect_center(self, layer, offset, width=None, height=None):
"""
@ -230,16 +231,13 @@ class layout():
width = drc["minwidth_{}".format(layer)]
if not height:
height = drc["minwidth_{}".format(layer)]
# negative layers indicate "unused" layers in a given technology
lpp = techlayer[layer]
corrected_offset = offset - vector(0.5 * width, 0.5 * height)
if lpp[0] >= 0:
self.objs.append(geometry.rectangle(lpp,
corrected_offset,
width,
height))
return self.objs[-1]
return None
self.objs.append(geometry.rectangle(lpp,
corrected_offset,
width,
height))
return self.objs[-1]
def add_segment_center(self, layer, start, end):
"""
@ -252,15 +250,15 @@ class layout():
elif start.x != end.x:
offset = vector(0, 0.5 * minwidth_layer)
return self.add_rect(layer,
start-offset,
end.x-start.x,
start - offset,
end.x - start.x,
minwidth_layer)
else:
offset = vector(0.5 * minwidth_layer, 0)
return self.add_rect(layer,
start-offset,
start - offset,
minwidth_layer,
end.y-start.y)
end.y - start.y)
def get_pin(self, text):
"""
@ -268,14 +266,14 @@ class layout():
"""
try:
if len(self.pin_map[text]) > 1:
debug.error("Should use a pin iterator since more than one pin {}".format(text),-1)
debug.error("Should use a pin iterator since more than one pin {}".format(text), -1)
# If we have one pin, return it and not the list.
# Otherwise, should use get_pins()
any_pin = next(iter(self.pin_map[text]))
return any_pin
except Exception:
self.gds_write("missing_pin.gds")
debug.error("No pin found with name {0} on {1}. Saved as missing_pin.gds.".format(text,self.name),-1)
debug.error("No pin found with name {0} on {1}. Saved as missing_pin.gds.".format(text, self.name), -1)
def get_pins(self, text):
"""
@ -377,7 +375,7 @@ class layout():
height = drc["minwidth_{0}".format(layer)]
new_pin = pin_layout(text,
[offset, offset+vector(width, height)],
[offset, offset + vector(width, height)],
layer)
try:
@ -413,23 +411,18 @@ class layout():
def add_label(self, text, layer, offset=[0, 0], zoom=-1):
"""Adds a text label on the given layer,offset, and zoom level"""
# negative layers indicate "unused" layers in a given technology
debug.info(5, "add label " + str(text) + " " + layer + " " + str(offset))
lpp = techlayer[layer]
if lpp[0] >= 0:
self.objs.append(geometry.label(text, lpp, offset, zoom))
return self.objs[-1]
return None
self.objs.append(geometry.label(text, lpp, offset, zoom))
return self.objs[-1]
def add_path(self, layer, coordinates, width=None):
"""Connects a routing path on given layer,coordinates,width."""
debug.info(4, "add path " + str(layer) + " " + str(coordinates))
import wire_path
# NOTE: (UNTESTED) add_path(...) is currently not used
# negative layers indicate "unused" layers in a given technology
# lpp = techlayer[layer]
# if lpp[0] >= 0:
# self.objs.append(geometry.path(lpp, coordinates, width))
# self.objs.append(geometry.path(lpp, coordinates, width))
wire_path.wire_path(obj=self,
layer=layer,
@ -465,7 +458,7 @@ class layout():
from tech import preferred_directions
return preferred_directions[layer]
def add_via(self, layers, offset, size=[1,1], directions=None, implant_type=None, well_type=None):
def add_via(self, layers, offset, size=[1, 1], directions=None, implant_type=None, well_type=None):
""" Add a three layer via structure. """
if not directions:
@ -487,7 +480,7 @@ class layout():
self.connect_inst([])
return inst
def add_via_center(self, layers, offset, directions=None, size=[1,1], implant_type=None, well_type=None):
def add_via_center(self, layers, offset, directions=None, size=[1, 1], implant_type=None, well_type=None):
"""
Add a three layer via structure by the center coordinate
accounting for mirroring and rotation.
@ -799,9 +792,7 @@ class layout():
self.add_rect(layer=layer,
offset=line_offset,
height=length)
# Make this the center of the rail
line_positions[names[i]] = line_offset + vector(half_minwidth,
0.5 * length)
line_positions[names[i]] = line_offset + vector(half_minwidth, 0)
else:
for i in range(len(names)):
line_offset = offset + vector(0,
@ -953,14 +944,14 @@ class layout():
min_y = min([pin.center().y for pin in pins])
# if we are less than a pitch, just create a non-preferred layer jog
if max_y-min_y <= pitch:
if max_y - min_y <= pitch:
half_layer_width = 0.5 * drc["minwidth_{0}".format(self.horizontal_layer)]
# Add the vertical trunk on the horizontal layer!
self.add_path(self.horizontal_layer,
[vector(trunk_offset.x, min_y - half_layer_width),
vector(trunk_offset.x,max_y + half_layer_width)])
vector(trunk_offset.x, max_y + half_layer_width)])
# Route each pin to the trunk
for pin in pins:
@ -1000,7 +991,7 @@ class layout():
# Remove the pin from all conflicts
# FIXME: This is O(n^2), so maybe optimize it.
for other_pin,conflicts in g.items():
for other_pin, conflicts in g.items():
if pin in conflicts:
conflicts.remove(pin)
g[other_pin]=conflicts
@ -1151,8 +1142,8 @@ class layout():
else:
self.bounding_box = self.add_rect(layer=boundary_layer,
offset=ll,
height=ur.y-ll.y,
width=ur.x-ll.x)
height=ur.y - ll.y,
width=ur.x - ll.x)
def add_enclosure(self, insts, layer="nwell"):
""" Add a layer that surrounds the given instances. Useful
@ -1171,8 +1162,8 @@ class layout():
self.add_rect(layer=layer,
offset=vector(xmin, ymin),
width=xmax-xmin,
height=ymax-ymin)
width=xmax - xmin,
height=ymax - ymin)
def copy_power_pins(self, inst, name):
"""
@ -1192,7 +1183,7 @@ class layout():
else:
debug.warning("{0} pins of {1} should be on {2} or metal1 for "\
"supply router."
.format(name,inst.name,self.pwr_grid_layer))
.format(name, inst.name, self.pwr_grid_layer))
def add_power_pin(self, name, loc, size=[1, 1], vertical=False, start_layer="m1"):
"""
@ -1244,8 +1235,8 @@ class layout():
[ll, ur] = bbox
supply_rail_spacing = self.supply_rail_pitch - self.supply_rail_width
height = (ur.y-ll.y) + 3 * self.supply_rail_pitch - supply_rail_spacing
width = (ur.x-ll.x) + 3 * self.supply_rail_pitch - supply_rail_spacing
height = (ur.y - ll.y) + 3 * self.supply_rail_pitch - supply_rail_spacing
width = (ur.x - ll.x) + 3 * self.supply_rail_pitch - supply_rail_spacing
# LEFT vertical rails
offset = ll + vector(-2 * self.supply_rail_pitch,

View File

@ -6,18 +6,19 @@
# All rights reserved.
#
from tech import drc
import debug
import contact
from wire_path import wire_path
from sram_factory import factory
class wire(wire_path):
"""
"""
Object metal wire; given the layer type
Add a wire of minimium metal width between a set of points.
Add a wire of minimium metal width between a set of points.
The points should be rectilinear to control the bend points. If
not, it will always go down first.
The points are the center of the wire.
The layer stack is the vertical, contact/via, and horizontal layers, respectively.
The layer stack is the vertical, contact/via, and horizontal layers, respectively.
"""
def __init__(self, obj, layer_stack, position_list):
self.obj = obj
@ -36,6 +37,7 @@ class wire(wire_path):
# wires and wire_paths should not be offset to (0,0)
def setup_layers(self):
(horiz_layer, via_layer, vert_layer) = self.layer_stack
self.via_layer_name = via_layer
@ -47,21 +49,49 @@ class wire(wire_path):
via_connect = factory.create(module_type="contact",
layer_stack=self.layer_stack,
dimensions=(1, 1))
# This is used for short connections to avoid via-to-via spacing errors
self.vert_layer_contact_width = max(via_connect.second_layer_width,
via_connect.first_layer_width)
self.horiz_layer_contact_width = max(via_connect.second_layer_height,
via_connect.first_layer_height)
self.node_to_node = [drc("minwidth_" + str(self.horiz_layer_name)) + via_connect.width,
drc("minwidth_" + str(self.horiz_layer_name)) + via_connect.height]
self.pitch = self.compute_pitch(self.layer_stack)
def compute_pitch(self, layer_stack):
"""
This is contact direction independent pitch,
i.e. we take the maximum contact dimension
"""
(layer1, via, layer2) = layer_stack
if layer1 == "poly" or layer1 == "active":
contact1 = getattr(contact, layer1 + "_contact")
else:
try:
contact1 = getattr(contact, layer1 + "_via")
except AttributeError:
contact1 = getattr(contact, layer2 + "_via")
max_contact = max(contact1.width, contact1.height)
layer1_space = drc("{0}_to_{0}".format(layer1))
layer2_space = drc("{0}_to_{0}".format(layer2))
pitch = max_contact + max(layer1_space, layer2_space)
return pitch
# create a 1x1 contact
def create_vias(self):
""" Add a via and corner square at every corner of the path."""
self.c=factory.create(module_type="contact",
layer_stack=self.layer_stack,
dimensions=(1, 1))
c_width = self.c.width
c_height = self.c.height
from itertools import tee,islice
nwise = lambda g,n=2: zip(*(islice(g,i,None) for i,g in enumerate(tee(g,n))))
threewise=nwise(self.position_list,3)
from itertools import tee, islice
nwise = lambda g, n=2: zip(*(islice(g, i, None) for i, g in enumerate(tee(g, n))))
threewise = nwise(self.position_list, 3)
for (a, offset, c) in list(threewise):
# add a exceptions to prevent a via when we don't change directions
@ -72,18 +102,25 @@ class wire(wire_path):
self.obj.add_via_center(layers=self.layer_stack,
offset=offset)
def create_rectangles(self):
"""
"""
Create the actual rectangles on the appropriate layers
using the position list of the corners.
using the position list of the corners.
"""
pl = self.position_list # position list
for index in range(len(pl) - 1):
# Horizontal wire segment
if pl[index][0] != pl[index + 1][0]:
line_length = pl[index + 1][0] - pl[index][0]
# Make the wire wider to avoid via-to-via spacing problems
# But don't make it wider if it is shorter than one via
if abs(line_length) < self.pitch and abs(line_length) > self.horiz_layer_contact_width:
width = self.horiz_layer_contact_width
else:
width = self.horiz_layer_width
temp_offset = [pl[index][0],
pl[index][1] - 0.5*self.horiz_layer_width]
pl[index][1] - 0.5 * width]
# If we go in the negative direction, move the offset
if line_length < 0:
temp_offset = [temp_offset[0] + line_length,
temp_offset[1]]
@ -91,10 +128,17 @@ class wire(wire_path):
length=abs(line_length),
offset=temp_offset,
orientation="horizontal",
layer_width=self.horiz_layer_width)
layer_width=width)
# Vertical wire segment
elif pl[index][1] != pl[index + 1][1]:
line_length = pl[index + 1][1] - pl[index][1]
temp_offset = [pl[index][0] - 0.5 * self.vert_layer_width,
# Make the wire wider to avoid via-to-via spacing problems
# But don't make it wider if it is shorter than one via
if abs(line_length) < self.pitch and abs(line_length) > self.vert_layer_contact_width:
width = self.vert_layer_contact_width
else:
width = self.vert_layer_width
temp_offset = [pl[index][0] - 0.5 * width,
pl[index][1]]
if line_length < 0:
temp_offset = [temp_offset[0],
@ -103,11 +147,13 @@ class wire(wire_path):
length=abs(line_length),
offset=temp_offset,
orientation="vertical",
layer_width=self.vert_layer_width)
layer_width=width)
def assert_node(self, A, B):
""" Check if the node movements are not big enough for the
technology sizes."""
"""
Check if the node movements are not big enough for the
technology sizes.
"""
X_diff = abs(A[0] - B[0])
Y_diff = abs(A[1] - B[1])
[minX, minY] = self.node_to_node

View File

@ -9,9 +9,10 @@ import debug
from drc_value import *
from drc_lut import *
class design_rules(dict):
"""
This is a class that implements the design rules structures.
"""
This is a class that implements the design rules structures.
"""
def __init__(self, name):
self.tech_name = name

View File

@ -7,9 +7,10 @@
#
import debug
class drc_lut():
"""
Implement a lookup table of rules.
"""
Implement a lookup table of rules.
Each element is a tuple with the last value being the rule.
It searches through backwards until all of the key values are
met and returns the rule value.
@ -31,7 +32,6 @@ class drc_lut():
for table_key in sorted(self.table.keys(), reverse=True):
if self.match(key, table_key):
return self.table[table_key]
def match(self, key1, key2):
"""
@ -39,8 +39,8 @@ class drc_lut():
(i.e. return false if key1<key2 for any pair.)
"""
# If any one pair is less than, return False
debug.check(len(key1)==len(key2),"Comparing invalid key lengths.")
for k1,k2 in zip(key1,key2):
debug.check(len(key1) == len(key2), "Comparing invalid key lengths.")
for k1, k2 in zip(key1, key2):
if k1 < k2:
return False
return True

View File

@ -6,8 +6,9 @@
# All rights reserved.
#
class drc_value():
"""
"""
A single DRC value.
"""
def __init__(self, value):

View File

@ -5,18 +5,16 @@
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
from math import log
import design
from tech import drc, parameter
from tech import cell_properties as props
import debug
import contact
from sram_factory import factory
import math
from vector import vector
from globals import OPTS
import logical_effort
class control_logic(design.design):
"""
Dynamically generated Control logic for the total SRAM circuit.
@ -29,7 +27,7 @@ class control_logic(design.design):
debug.info(1, "Creating {}".format(name))
self.add_comment("num_rows: {0}".format(num_rows))
self.add_comment("words_per_row: {0}".format(words_per_row))
self.add_comment("word_size {0}".format(word_size))
self.add_comment("word_size {0}".format(word_size))
self.sram=sram
self.num_rows = num_rows
@ -37,14 +35,15 @@ class control_logic(design.design):
self.word_size = word_size
self.port_type = port_type
self.num_cols = word_size*words_per_row
self.num_words = num_rows*words_per_row
self.num_cols = word_size * words_per_row
self.num_words = num_rows * words_per_row
self.enable_delay_chain_resizing = False
self.inv_parasitic_delay = logical_effort.logical_effort.pinv
# Determines how much larger the sen delay should be. Accounts for possible error in model.
self.wl_timing_tolerance = 1
# FIXME: This should be made a parameter
self.wl_timing_tolerance = 1
self.wl_stage_efforts = None
self.sen_stage_efforts = None
@ -67,17 +66,16 @@ class control_logic(design.design):
""" Create layout and route between modules """
self.place_instances()
self.route_all()
#self.add_lvs_correspondence_points()
# self.add_lvs_correspondence_points()
self.add_boundary()
self.DRC_LVS()
def add_pins(self):
""" Add the pins to the control logic module. """
self.add_pin_list(self.input_list + ["clk"] + self.rbl_list, "INPUT")
self.add_pin_list(self.output_list,"OUTPUT")
self.add_pin("vdd","POWER")
self.add_pin("gnd","GROUND")
self.add_pin_list(self.output_list, "OUTPUT")
self.add_pin("vdd", "POWER")
self.add_pin("gnd", "GROUND")
def add_modules(self):
""" Add all the required modules """
@ -101,14 +99,13 @@ class control_logic(design.design):
height=dff_height)
self.add_mod(self.rbl_driver)
# clk_buf drives a flop for every address
addr_flops = math.log(self.num_words,2) + math.log(self.words_per_row,2)
# clk_buf drives a flop for every address
addr_flops = math.log(self.num_words, 2) + math.log(self.words_per_row, 2)
# plus data flops and control flops
num_flops = addr_flops + self.word_size + self.num_control_signals
# each flop internally has a FO 5 approximately
# plus about 5 fanouts for the control logic
clock_fanout = 5*num_flops + 5
clock_fanout = 5 * num_flops + 5
self.clk_buf_driver = factory.create(module_type="pdriver",
fanout=clock_fanout,
height=dff_height)
@ -117,7 +114,7 @@ class control_logic(design.design):
# We will use the maximum since this same value is used to size the wl_en
# and the p_en_bar drivers
max_fanout = max(self.num_rows,self.num_cols)
max_fanout = max(self.num_rows, self.num_cols)
# wl_en drives every row in the bank
self.wl_en_driver = factory.create(module_type="pdriver",
@ -127,7 +124,7 @@ class control_logic(design.design):
# w_en drives every write driver
self.wen_and = factory.create(module_type="pand3",
size=self.word_size+8,
size=self.word_size + 8,
height=dff_height)
self.add_mod(self.wen_and)
@ -137,7 +134,7 @@ class control_logic(design.design):
height=dff_height)
self.add_mod(self.sen_and3)
# used to generate inverted signals with low fanout
# used to generate inverted signals with low fanout
self.inv = factory.create(module_type="pinv",
size=1,
height=dff_height)
@ -151,7 +148,6 @@ class control_logic(design.design):
height=dff_height)
self.add_mod(self.p_en_bar_driver)
self.nand2 = factory.create(module_type="pnand2",
height=dff_height)
self.add_mod(self.nand2)
@ -179,14 +175,14 @@ class control_logic(design.design):
# delay_fanout_list=[delay_fanout_heuristic]*delay_stages_heuristic,
# bitcell_loads=bitcell_loads)
# #Resize if necessary, condition depends on resizing method
# if self.sram != None and self.enable_delay_chain_resizing and not self.does_sen_rise_fall_timing_match():
# if self.sram != None and self.enable_delay_chain_resizing and not self.does_sen_rise_fall_timing_match():
# #This resizes to match fall and rise delays, can make the delay chain weird sizes.
# stage_list = self.get_dynamic_delay_fanout_list(delay_stages_heuristic, delay_fanout_heuristic)
# self.replica_bitline = factory.create(module_type="replica_bitline",
# delay_fanout_list=stage_list,
# bitcell_loads=bitcell_loads)
# #This resizes based on total delay.
# #This resizes based on total delay.
# # delay_stages, delay_fanout = self.get_dynamic_delay_chain_size(delay_stages_heuristic, delay_fanout_heuristic)
# # self.replica_bitline = factory.create(module_type="replica_bitline",
# # delay_fanout_list=[delay_fanout]*delay_stages,
@ -195,9 +191,10 @@ class control_logic(design.design):
# self.sen_delay_rise,self.sen_delay_fall = self.get_delays_to_sen() #get the new timing
# self.delay_chain_resized = True
debug.check(OPTS.delay_chain_stages%2, "Must use odd number of delay chain stages for inverting delay chain.")
debug.check(OPTS.delay_chain_stages % 2,
"Must use odd number of delay chain stages for inverting delay chain.")
self.delay_chain=factory.create(module_type="delay_chain",
fanout_list = OPTS.delay_chain_stages*[OPTS.delay_chain_fanout_per_stage])
fanout_list = OPTS.delay_chain_stages * [ OPTS.delay_chain_fanout_per_stage ])
self.add_mod(self.delay_chain)
def get_heuristic_delay_chain_size(self):
@ -219,17 +216,17 @@ class control_logic(design.design):
def set_sen_wl_delays(self):
"""Set delays for wordline and sense amp enable"""
self.wl_delay_rise,self.wl_delay_fall = self.get_delays_to_wl()
self.sen_delay_rise,self.sen_delay_fall = self.get_delays_to_sen()
self.wl_delay = self.wl_delay_rise+self.wl_delay_fall
self.sen_delay = self.sen_delay_rise+self.sen_delay_fall
self.wl_delay_rise, self.wl_delay_fall = self.get_delays_to_wl()
self.sen_delay_rise, self.sen_delay_fall = self.get_delays_to_sen()
self.wl_delay = self.wl_delay_rise + self.wl_delay_fall
self.sen_delay = self.sen_delay_rise + self.sen_delay_fall
def does_sen_rise_fall_timing_match(self):
"""Compare the relative rise/fall delays of the sense amp enable and wordline"""
self.set_sen_wl_delays()
# This is not necessarily more reliable than total delay in some cases.
if (self.wl_delay_rise*self.wl_timing_tolerance >= self.sen_delay_rise or
self.wl_delay_fall*self.wl_timing_tolerance >= self.sen_delay_fall):
if (self.wl_delay_rise * self.wl_timing_tolerance >= self.sen_delay_rise or
self.wl_delay_fall * self.wl_timing_tolerance >= self.sen_delay_fall):
return False
else:
return True
@ -240,91 +237,107 @@ class control_logic(design.design):
# The sen delay must always be bigger than than the wl
# delay. This decides how much larger the sen delay must be
# before a re-size is warranted.
if self.wl_delay*self.wl_timing_tolerance >= self.sen_delay:
if self.wl_delay * self.wl_timing_tolerance >= self.sen_delay:
return False
else:
return True
return True
def get_dynamic_delay_chain_size(self, previous_stages, previous_fanout):
"""Determine the size of the delay chain used for the Sense Amp Enable using path delays"""
from math import ceil
previous_delay_chain_delay = (previous_fanout+1+self.inv_parasitic_delay)*previous_stages
previous_delay_chain_delay = (previous_fanout + 1 + self.inv_parasitic_delay) * previous_stages
debug.info(2, "Previous delay chain produced {} delay units".format(previous_delay_chain_delay))
delay_fanout = 3 # This can be anything >=2
# This can be anything >=2
delay_fanout = 3
# The delay chain uses minimum sized inverters. There are (fanout+1)*stages inverters and each
# inverter adds 1 unit of delay (due to minimum size). This also depends on the pinv value
required_delay = self.wl_delay*self.wl_timing_tolerance - (self.sen_delay-previous_delay_chain_delay)
required_delay = self.wl_delay * self.wl_timing_tolerance - (self.sen_delay - previous_delay_chain_delay)
debug.check(required_delay > 0, "Cannot size delay chain to have negative delay")
delay_stages = ceil(required_delay/(delay_fanout+1+self.inv_parasitic_delay))
if delay_stages%2 == 1: #force an even number of stages.
delay_stages+=1
delay_per_stage = delay_fanout + 1 + self.inv_parasitic_delay
delay_stages = ceil(required_delay / delay_per_stage)
# force an even number of stages.
if delay_stages % 2 == 1:
delay_stages += 1
# Fanout can be varied as well but is a little more complicated but potentially optimal.
debug.info(1, "Setting delay chain to {} stages with {} fanout to match {} delay".format(delay_stages, delay_fanout, required_delay))
return (delay_stages, delay_fanout)
def get_dynamic_delay_fanout_list(self, previous_stages, previous_fanout):
"""Determine the size of the delay chain used for the Sense Amp Enable using path delays"""
previous_delay_chain_delay = (previous_fanout+1+self.inv_parasitic_delay)*previous_stages
previous_delay_per_stage = previous_fanout + 1 + self.inv_parasitic_delay
previous_delay_chain_delay = previous_delay_per_stage * previous_stages
debug.info(2, "Previous delay chain produced {} delay units".format(previous_delay_chain_delay))
fanout_rise = fanout_fall = 2 # This can be anything >=2
# The delay chain uses minimum sized inverters. There are (fanout+1)*stages inverters and each
# inverter adds 1 unit of delay (due to minimum size). This also depends on the pinv value
required_delay_fall = self.wl_delay_fall*self.wl_timing_tolerance - (self.sen_delay_fall-previous_delay_chain_delay/2)
required_delay_rise = self.wl_delay_rise*self.wl_timing_tolerance - (self.sen_delay_rise-previous_delay_chain_delay/2)
debug.info(2,"Required delays from chain: fall={}, rise={}".format(required_delay_fall,required_delay_rise))
required_delay_fall = self.wl_delay_fall * self.wl_timing_tolerance - \
(self.sen_delay_fall - previous_delay_chain_delay / 2)
required_delay_rise = self.wl_delay_rise * self.wl_timing_tolerance - \
(self.sen_delay_rise - previous_delay_chain_delay / 2)
debug.info(2,
"Required delays from chain: fall={}, rise={}".format(required_delay_fall,
required_delay_rise))
# If the fanout is different between rise/fall by this amount. Stage algorithm is made more pessimistic.
WARNING_FANOUT_DIFF = 5
stages_close = False
# The stages need to be equal (or at least a even number of stages with matching rise/fall delays)
while True:
stages_fall = self.calculate_stages_with_fixed_fanout(required_delay_fall,fanout_fall)
stages_rise = self.calculate_stages_with_fixed_fanout(required_delay_rise,fanout_rise)
debug.info(1,"Fall stages={}, rise stages={}".format(stages_fall,stages_rise))
if abs(stages_fall-stages_rise) == 1 and not stages_close:
stages_fall = self.calculate_stages_with_fixed_fanout(required_delay_fall,
fanout_fall)
stages_rise = self.calculate_stages_with_fixed_fanout(required_delay_rise,
fanout_rise)
debug.info(1,
"Fall stages={}, rise stages={}".format(stages_fall,
stages_rise))
if abs(stages_fall - stages_rise) == 1 and not stages_close:
stages_close = True
safe_fanout_rise = fanout_rise
safe_fanout_fall = fanout_fall
if stages_fall == stages_rise:
if stages_fall == stages_rise:
break
elif abs(stages_fall-stages_rise) == 1 and WARNING_FANOUT_DIFF < abs(fanout_fall-fanout_rise):
elif abs(stages_fall - stages_rise) == 1 and WARNING_FANOUT_DIFF < abs(fanout_fall - fanout_rise):
debug.info(1, "Delay chain fanouts between stages are large. Making chain size larger for safety.")
fanout_rise = safe_fanout_rise
fanout_fall = safe_fanout_fall
break
# There should also be a condition to make sure the fanout does not get too large.
# There should also be a condition to make sure the fanout does not get too large.
# Otherwise, increase the fanout of delay with the most stages, calculate new stages
elif stages_fall>stages_rise:
fanout_fall+=1
else:
fanout_rise+=1
total_stages = max(stages_fall,stages_rise)*2
total_stages = max(stages_fall, stages_rise) * 2
debug.info(1, "New Delay chain: stages={}, fanout_rise={}, fanout_fall={}".format(total_stages, fanout_rise, fanout_fall))
# Creates interleaved fanout list of rise/fall delays. Assumes fall is the first stage.
stage_list = [fanout_fall if i%2==0 else fanout_rise for i in range(total_stages)]
stage_list = [fanout_fall if i % 2==0 else fanout_rise for i in range(total_stages)]
return stage_list
def calculate_stages_with_fixed_fanout(self, required_delay, fanout):
from math import ceil
# Delay being negative is not an error. It implies that any amount of stages would have a negative effect on the overall delay
if required_delay <= 3+self.inv_parasitic_delay: #3 is the minimum delay per stage (with pinv=0).
# 3 is the minimum delay per stage (with pinv=0).
if required_delay <= 3 + self.inv_parasitic_delay:
return 1
delay_stages = ceil(required_delay/(fanout+1+self.inv_parasitic_delay))
delay_per_stage = fanout + 1 + self.inv_parasitic_delay
delay_stages = ceil(required_delay / delay_per_stage)
return delay_stages
def calculate_stage_list(self, total_stages, fanout_rise, fanout_fall):
"""Produces a list of fanouts which determine the size of the delay chain. List length is the number of stages.
Assumes the first stage is falling.
"""
Produces a list of fanouts which determine the size of the delay chain.
List length is the number of stages.
Assumes the first stage is falling.
"""
stage_list = []
for i in range(total_stages):
if i%2 == 0:
if i % 2 == 0:
stage_list.append()
def setup_signal_busses(self):
@ -351,7 +364,7 @@ class control_logic(design.design):
else:
self.internal_bus_list = ["rbl_bl_delay_bar", "rbl_bl_delay", "gated_clk_bar", "gated_clk_buf", "clk_buf", "cs"]
# leave space for the bus plus one extra space
self.internal_bus_width = (len(self.internal_bus_list)+1)*self.m2_pitch
self.internal_bus_width = (len(self.internal_bus_list) + 1) * self.m2_pitch
# Outputs to the bank
if self.port_type == "rw":
@ -366,15 +379,13 @@ class control_logic(design.design):
self.supply_list = ["vdd", "gnd"]
def route_rails(self):
""" Add the input signal inverted tracks """
height = self.control_logic_center.y - self.m2_pitch
offset = vector(self.ctrl_dff_array.width,0)
offset = vector(self.ctrl_dff_array.width, 0)
self.rail_offsets = self.create_vertical_bus("m2", self.m2_pitch, offset, self.internal_bus_list, height)
def create_instances(self):
""" Create all the instances """
self.create_dffs()
@ -388,9 +399,7 @@ class control_logic(design.design):
if (self.port_type == "rw") or (self.port_type == "r"):
self.create_sen_row()
self.create_delay()
self.create_pen_row()
self.create_pen_row()
def place_instances(self):
""" Place all the instances """
@ -406,13 +415,13 @@ class control_logic(design.design):
row = 0
# Add the logic on the right of the bus
self.place_clk_buf_row(row)
self.place_clk_buf_row(row)
row += 1
self.place_gated_clk_bar_row(row)
self.place_gated_clk_bar_row(row)
row += 1
self.place_gated_clk_buf_row(row)
self.place_gated_clk_buf_row(row)
row += 1
self.place_wlen_row(row)
self.place_wlen_row(row)
row += 1
if (self.port_type == "rw") or (self.port_type == "w"):
self.place_wen_row(row)
@ -421,10 +430,10 @@ class control_logic(design.design):
row += 1
self.place_pen_row(row)
row += 1
if (self.port_type == "rw") or (self.port_type == "w"):
if (self.port_type == "rw") or (self.port_type == "w"):
self.place_rbl_delay_row(row)
row += 1
if (self.port_type == "rw") or (self.port_type == "r"):
if (self.port_type == "rw") or (self.port_type == "r"):
self.place_sen_row(row)
row += 1
self.place_delay(row)
@ -435,11 +444,11 @@ class control_logic(design.design):
self.control_logic_center = vector(self.ctrl_dff_inst.rx(), control_center_y)
# Extra pitch on top and right
self.height = height + 2*self.m1_pitch
self.height = height + 2 * self.m1_pitch
# Max of modules or logic rows
self.width = max([inst.rx() for inst in self.row_end_inst])
if (self.port_type == "rw") or (self.port_type == "r"):
self.width = max(self.delay_inst.rx() , self.width)
self.width = max(self.delay_inst.rx(), self.width)
self.width += self.m2_pitch
def route_all(self):
@ -459,7 +468,6 @@ class control_logic(design.design):
self.route_gated_clk_buf()
self.route_supply()
def create_delay(self):
""" Create the replica bitline """
self.delay_inst=self.add_inst(name="delay_chain",
@ -467,9 +475,9 @@ class control_logic(design.design):
# rbl_bl_delay is asserted (1) when the bitline has been discharged
self.connect_inst(["rbl_bl", "rbl_bl_delay", "vdd", "gnd"])
def place_delay(self,row):
def place_delay(self, row):
""" Place the replica bitline """
y_off = row * self.and2.height + 2*self.m1_pitch
y_off = row * self.and2.height + 2 * self.m1_pitch
# Add the RBL above the rows
# Add to the right of the control rows and routing channel
@ -482,24 +490,22 @@ class control_logic(design.design):
# Connect to the rail level with the vdd rail
# Use pen since it is in every type of control logic
vdd_ypos = self.p_en_bar_nand_inst.get_pin("vdd").by()
in_pos = vector(self.rail_offsets["rbl_bl_delay"].x,vdd_ypos)
mid1 = vector(out_pos.x,in_pos.y)
self.add_wire(self.m1_stack,[out_pos, mid1, in_pos])
in_pos = vector(self.rail_offsets["rbl_bl_delay"].x, vdd_ypos)
mid1 = vector(out_pos.x, in_pos.y)
self.add_wire(self.m1_stack, [out_pos, mid1, in_pos])
self.add_via_center(layers=self.m1_stack,
offset=in_pos)
# Input from RBL goes to the delay line for futher delay
self.copy_layout_pin(self.delay_inst, "in", "rbl_bl")
def create_clk_buf_row(self):
""" Create the multistage and gated clock buffer """
self.clk_buf_inst = self.add_inst(name="clkbuf",
mod=self.clk_buf_driver)
self.connect_inst(["clk","clk_buf","vdd","gnd"])
self.connect_inst(["clk", "clk_buf", "vdd", "gnd"])
def place_clk_buf_row(self,row):
def place_clk_buf_row(self, row):
x_offset = self.control_x_offset
x_offset = self.place_util(self.clk_buf_inst, x_offset, row)
@ -512,17 +518,16 @@ class control_logic(design.design):
self.add_layout_pin_segment_center(text="clk",
layer="m2",
start=clk_pos,
end=clk_pos.scale(1,0))
end=clk_pos.scale(1, 0))
self.add_via_center(layers=self.m1_stack,
offset=clk_pos)
# Connect this at the bottom of the buffer
out_pos = self.clk_buf_inst.get_pin("Z").center()
mid1 = vector(out_pos.x,2*self.m2_pitch)
mid1 = vector(out_pos.x, 2 * self.m2_pitch)
mid2 = vector(self.rail_offsets["clk_buf"].x, mid1.y)
bus_pos = self.rail_offsets["clk_buf"]
self.add_wire(("m3","via2","m2"),[out_pos, mid1, mid2, bus_pos])
self.add_wire(self.m2_stack[::-1], [out_pos, mid1, mid2, bus_pos])
# The pin is on M1, so we need another via as well
self.add_via_center(layers=self.m1_stack,
offset=self.clk_buf_inst.get_pin("Z").center())
@ -532,40 +537,45 @@ class control_logic(design.design):
def create_gated_clk_bar_row(self):
self.clk_bar_inst = self.add_inst(name="inv_clk_bar",
mod=self.inv)
self.connect_inst(["clk_buf","clk_bar","vdd","gnd"])
self.connect_inst(["clk_buf", "clk_bar", "vdd", "gnd"])
self.gated_clk_bar_inst = self.add_inst(name="and2_gated_clk_bar",
mod=self.and2)
self.connect_inst(["cs","clk_bar","gated_clk_bar","vdd","gnd"])
self.connect_inst(["cs", "clk_bar", "gated_clk_bar", "vdd", "gnd"])
def place_gated_clk_bar_row(self,row):
def place_gated_clk_bar_row(self, row):
x_offset = self.control_x_offset
x_offset = self.place_util(self.clk_bar_inst, x_offset, row)
x_offset = self.place_util(self.gated_clk_bar_inst, x_offset, row)
x_offset = self.place_util(self.gated_clk_bar_inst, x_offset, row)
self.row_end_inst.append(self.gated_clk_bar_inst)
def route_gated_clk_bar(self):
clkbuf_map = zip(["A"], ["clk_buf"])
self.connect_vertical_bus(clkbuf_map, self.clk_bar_inst, self.rail_offsets)
self.connect_vertical_bus(clkbuf_map, self.clk_bar_inst, self.rail_offsets)
out_pos = self.clk_bar_inst.get_pin("Z").center()
in_pos = self.gated_clk_bar_inst.get_pin("B").center()
mid1 = vector(in_pos.x,out_pos.y)
self.add_path("m1",[out_pos, mid1, in_pos])
mid1 = vector(in_pos.x, out_pos.y)
self.add_path("m1", [out_pos, mid1, in_pos])
# This is the second gate over, so it needs to be on M3
clkbuf_map = zip(["A"], ["cs"])
self.connect_vertical_bus(clkbuf_map, self.gated_clk_bar_inst, self.rail_offsets, ("m3", "via2", "m2"))
self.connect_vertical_bus(clkbuf_map,
self.gated_clk_bar_inst,
self.rail_offsets,
self.m2_stack[::-1])
# The pin is on M1, so we need another via as well
self.add_via_center(layers=self.m1_stack,
offset=self.gated_clk_bar_inst.get_pin("A").center())
# This is the second gate over, so it needs to be on M3
clkbuf_map = zip(["Z"], ["gated_clk_bar"])
self.connect_vertical_bus(clkbuf_map, self.gated_clk_bar_inst, self.rail_offsets, ("m3", "via2", "m2"))
self.connect_vertical_bus(clkbuf_map,
self.gated_clk_bar_inst,
self.rail_offsets,
self.m2_stack[::-1])
# The pin is on M1, so we need another via as well
self.add_via_center(layers=self.m1_stack,
offset=self.gated_clk_bar_inst.get_pin("Z").center())
@ -573,9 +583,9 @@ class control_logic(design.design):
def create_gated_clk_buf_row(self):
self.gated_clk_buf_inst = self.add_inst(name="and2_gated_clk_buf",
mod=self.and2)
self.connect_inst(["clk_buf", "cs","gated_clk_buf","vdd","gnd"])
self.connect_inst(["clk_buf", "cs", "gated_clk_buf", "vdd", "gnd"])
def place_gated_clk_buf_row(self,row):
def place_gated_clk_buf_row(self, row):
x_offset = self.control_x_offset
x_offset = self.place_util(self.gated_clk_buf_inst, x_offset, row)
@ -584,11 +594,13 @@ class control_logic(design.design):
def route_gated_clk_buf(self):
clkbuf_map = zip(["A", "B"], ["clk_buf", "cs"])
self.connect_vertical_bus(clkbuf_map, self.gated_clk_buf_inst, self.rail_offsets)
self.connect_vertical_bus(clkbuf_map, self.gated_clk_buf_inst, self.rail_offsets)
clkbuf_map = zip(["Z"], ["gated_clk_buf"])
self.connect_vertical_bus(clkbuf_map, self.gated_clk_buf_inst, self.rail_offsets, ("m3", "via2", "m2"))
self.connect_vertical_bus(clkbuf_map,
self.gated_clk_buf_inst,
self.rail_offsets,
self.m2_stack[::-1])
# The pin is on M1, so we need another via as well
self.add_via_center(layers=self.m1_stack,
offset=self.gated_clk_buf_inst.get_pin("Z").center())
@ -602,7 +614,7 @@ class control_logic(design.design):
def place_wlen_row(self, row):
x_offset = self.control_x_offset
x_offset = self.place_util(self.wl_en_inst, x_offset, row)
x_offset = self.place_util(self.wl_en_inst, x_offset, row)
self.row_end_inst.append(self.wl_en_inst)
@ -623,11 +635,11 @@ class control_logic(design.design):
mod=self.p_en_bar_driver)
self.connect_inst(["p_en_bar_unbuf", "p_en_bar", "vdd", "gnd"])
def place_pen_row(self,row):
def place_pen_row(self, row):
x_offset = self.control_x_offset
x_offset = self.place_util(self.p_en_bar_nand_inst, x_offset, row)
x_offset = self.place_util(self.p_en_bar_driver_inst, x_offset, row)
x_offset = self.place_util(self.p_en_bar_nand_inst, x_offset, row)
x_offset = self.place_util(self.p_en_bar_driver_inst, x_offset, row)
self.row_end_inst.append(self.p_en_bar_driver_inst)
@ -637,8 +649,8 @@ class control_logic(design.design):
out_pos = self.p_en_bar_nand_inst.get_pin("Z").rc()
in_pos = self.p_en_bar_driver_inst.get_pin("A").lc()
mid1 = vector(out_pos.x,in_pos.y)
self.add_wire(self.m1_stack,[out_pos, mid1,in_pos])
mid1 = vector(out_pos.x, in_pos.y)
self.add_wire(self.m1_stack, [out_pos, mid1, in_pos])
self.connect_output(self.p_en_bar_driver_inst, "Z", "p_en_bar")
@ -656,14 +668,12 @@ class control_logic(design.design):
# hence we use rbl_bl_delay as well.
self.connect_inst(["rbl_bl_delay", "gated_clk_bar", input_name, "s_en", "vdd", "gnd"])
def place_sen_row(self,row):
def place_sen_row(self, row):
x_offset = self.control_x_offset
x_offset = self.place_util(self.s_en_gate_inst, x_offset, row)
self.row_end_inst.append(self.s_en_gate_inst)
def route_sen(self):
@ -683,7 +693,7 @@ class control_logic(design.design):
mod=self.inv)
self.connect_inst(["rbl_bl_delay", "rbl_bl_delay_bar", "vdd", "gnd"])
def place_rbl_delay_row(self,row):
def place_rbl_delay_row(self, row):
x_offset = self.control_x_offset
x_offset = self.place_util(self.rbl_bl_delay_inv_inst, x_offset, row)
@ -700,11 +710,9 @@ class control_logic(design.design):
self.add_via_center(layers=self.m1_stack,
offset=self.rbl_bl_delay_inv_inst.get_pin("Z").center())
rbl_map = zip(["A"], ["rbl_bl_delay"])
self.connect_vertical_bus(rbl_map, self.rbl_bl_delay_inv_inst, self.rail_offsets)
def create_wen_row(self):
# input: we (or cs) output: w_en
@ -720,8 +728,7 @@ class control_logic(design.design):
# Only drive the writes in the second half of the clock cycle during a write operation.
self.connect_inst([input_name, "rbl_bl_delay_bar", "gated_clk_bar", "w_en", "vdd", "gnd"])
def place_wen_row(self,row):
def place_wen_row(self, row):
x_offset = self.control_x_offset
x_offset = self.place_util(self.w_en_gate_inst, x_offset, row)
@ -750,22 +757,22 @@ class control_logic(design.design):
self.connect_inst(inst_pins)
def place_dffs(self):
self.ctrl_dff_inst.place(vector(0,0))
self.ctrl_dff_inst.place(vector(0, 0))
def route_dffs(self):
if self.port_type == "rw":
dff_out_map = zip(["dout_bar_0", "dout_bar_1", "dout_1"], ["cs", "we", "we_bar"])
elif self.port_type == "r":
dff_out_map = zip(["dout_bar_0", "dout_0"], ["cs", "cs_bar"])
dff_out_map = zip(["dout_bar_0", "dout_0"], ["cs", "cs_bar"])
else:
dff_out_map = zip(["dout_bar_0"], ["cs"])
self.connect_vertical_bus(dff_out_map, self.ctrl_dff_inst, self.rail_offsets, ("m3", "via2", "m2"))
# Connect the clock rail to the other clock rail
in_pos = self.ctrl_dff_inst.get_pin("clk").uc()
mid_pos = in_pos + vector(0,2*self.m2_pitch)
mid_pos = in_pos + vector(0, 2 * self.m2_pitch)
rail_pos = vector(self.rail_offsets["clk_buf"].x, mid_pos.y)
self.add_wire(self.m1_stack,[in_pos, mid_pos, rail_pos])
self.add_wire(self.m1_stack, [in_pos, mid_pos, rail_pos])
self.add_via_center(layers=self.m1_stack,
offset=rail_pos)
@ -773,34 +780,31 @@ class control_logic(design.design):
if (self.port_type == "rw"):
self.copy_layout_pin(self.ctrl_dff_inst, "din_1", "web")
def get_offset(self,row):
def get_offset(self, row):
""" Compute the y-offset and mirroring """
y_off = row*self.and2.height
y_off = row * self.and2.height
if row % 2:
y_off += self.and2.height
mirror="MX"
else:
mirror="R0"
return (y_off,mirror)
return (y_off, mirror)
def connect_output(self, inst, pin_name, out_name):
""" Create an output pin on the right side from the pin of a given instance. """
out_pin = inst.get_pin(pin_name)
right_pos=out_pin.center() + vector(self.width-out_pin.cx(),0)
right_pos = out_pin.center() + vector(self.width - out_pin.cx(), 0)
self.add_layout_pin_segment_center(text=out_name,
layer="m1",
start=out_pin.center(),
end=right_pos)
def route_supply(self):
""" Add vdd and gnd to the instance cells """
max_row_x_loc = max([inst.rx() for inst in self.row_end_inst])
max_row_x_loc = max([inst.rx() for inst in self.row_end_inst])
for inst in self.row_end_inst:
pins = inst.get_pins("vdd")
for pin in pins:
@ -818,16 +822,14 @@ class control_logic(design.design):
self.add_power_pin("gnd", pin_loc)
self.add_path("m1", [row_loc, pin_loc])
self.copy_layout_pin(self.delay_inst,"gnd")
self.copy_layout_pin(self.delay_inst,"vdd")
self.copy_layout_pin(self.delay_inst, "gnd")
self.copy_layout_pin(self.delay_inst, "vdd")
self.copy_layout_pin(self.ctrl_dff_inst,"gnd")
self.copy_layout_pin(self.ctrl_dff_inst,"vdd")
self.copy_layout_pin(self.ctrl_dff_inst, "gnd")
self.copy_layout_pin(self.ctrl_dff_inst, "vdd")
def add_lvs_correspondence_points(self):
""" This adds some points for easier debugging if LVS goes wrong.
""" This adds some points for easier debugging if LVS goes wrong.
These should probably be turned off by default though, since extraction
will show these as ports in the extracted netlist.
"""
@ -851,74 +853,79 @@ class control_logic(design.design):
offset=pin.ll(),
height=pin.height(),
width=pin.width())
def get_delays_to_wl(self):
"""Get the delay (in delay units) of the clk to a wordline in the bitcell array"""
debug.check(self.sram.all_mods_except_control_done, "Cannot calculate sense amp enable delay unless all module have been added.")
self.wl_stage_efforts = self.get_wordline_stage_efforts()
clk_to_wl_rise,clk_to_wl_fall = logical_effort.calculate_relative_rise_fall_delays(self.wl_stage_efforts)
total_delay = clk_to_wl_rise + clk_to_wl_fall
debug.info(1, "Clock to wl delay is rise={:.3f}, fall={:.3f}, total={:.3f} in delay units".format(clk_to_wl_rise, clk_to_wl_fall,total_delay))
return clk_to_wl_rise,clk_to_wl_fall
clk_to_wl_rise, clk_to_wl_fall = logical_effort.calculate_relative_rise_fall_delays(self.wl_stage_efforts)
total_delay = clk_to_wl_rise + clk_to_wl_fall
debug.info(1,
"Clock to wl delay is rise={:.3f}, fall={:.3f}, total={:.3f} in delay units".format(clk_to_wl_rise,
clk_to_wl_fall,
total_delay))
return clk_to_wl_rise, clk_to_wl_fall
def get_wordline_stage_efforts(self):
"""Follows the gated_clk_bar -> wl_en -> wordline signal for the total path efforts"""
stage_effort_list = []
#Initial direction of gated_clk_bar signal for this path
# Initial direction of gated_clk_bar signal for this path
is_clk_bar_rise = True
#Calculate the load on wl_en within the module and add it to external load
# Calculate the load on wl_en within the module and add it to external load
external_cout = self.sram.get_wl_en_cin()
#First stage is the clock buffer
# First stage is the clock buffer
stage_effort_list += self.clk_buf_driver.get_stage_efforts(external_cout, is_clk_bar_rise)
last_stage_is_rise = stage_effort_list[-1].is_rise
#Then ask the sram for the other path delays (from the bank)
# Then ask the sram for the other path delays (from the bank)
stage_effort_list += self.sram.get_wordline_stage_efforts(last_stage_is_rise)
return stage_effort_list
def get_delays_to_sen(self):
"""Get the delay (in delay units) of the clk to a sense amp enable.
This does not incorporate the delay of the replica bitline.
"""
Get the delay (in delay units) of the clk to a sense amp enable.
This does not incorporate the delay of the replica bitline.
"""
debug.check(self.sram.all_mods_except_control_done, "Cannot calculate sense amp enable delay unless all module have been added.")
self.sen_stage_efforts = self.get_sa_enable_stage_efforts()
clk_to_sen_rise, clk_to_sen_fall = logical_effort.calculate_relative_rise_fall_delays(self.sen_stage_efforts)
total_delay = clk_to_sen_rise + clk_to_sen_fall
debug.info(1, "Clock to s_en delay is rise={:.3f}, fall={:.3f}, total={:.3f} in delay units".format(clk_to_sen_rise, clk_to_sen_fall,total_delay))
return clk_to_sen_rise, clk_to_sen_fall
total_delay = clk_to_sen_rise + clk_to_sen_fall
debug.info(1,
"Clock to s_en delay is rise={:.3f}, fall={:.3f}, total={:.3f} in delay units".format(clk_to_sen_rise,
clk_to_sen_fall,
total_delay))
return clk_to_sen_rise, clk_to_sen_fall
def get_sa_enable_stage_efforts(self):
"""Follows the gated_clk_bar signal to the sense amp enable signal adding each stages stage effort to a list"""
stage_effort_list = []
#Initial direction of clock signal for this path
# Initial direction of clock signal for this path
last_stage_rise = True
#First stage, gated_clk_bar -(and2)-> rbl_in. Only for RW ports.
# First stage, gated_clk_bar -(and2)-> rbl_in. Only for RW ports.
if self.port_type == "rw":
stage1_cout = self.replica_bitline.get_en_cin()
stage_effort_list += self.and2.get_stage_efforts(stage1_cout, last_stage_rise)
last_stage_rise = stage_effort_list[-1].is_rise
#Replica bitline stage, rbl_in -(rbl)-> pre_s_en
# Replica bitline stage, rbl_in -(rbl)-> pre_s_en
stage2_cout = self.sen_and2.get_cin()
stage_effort_list += self.replica_bitline.determine_sen_stage_efforts(stage2_cout, last_stage_rise)
last_stage_rise = stage_effort_list[-1].is_rise
#buffer stage, pre_s_en -(buffer)-> s_en
# buffer stage, pre_s_en -(buffer)-> s_en
stage3_cout = self.sram.get_sen_cin()
stage_effort_list += self.s_en_driver.get_stage_efforts(stage3_cout, last_stage_rise)
last_stage_rise = stage_effort_list[-1].is_rise
return stage_effort_list
return stage_effort_list
def get_wl_sen_delays(self):
"""Gets a list of the stages and delays in order of their path."""
""" Gets a list of the stages and delays in order of their path. """
if self.sen_stage_efforts == None or self.wl_stage_efforts == None:
debug.error("Model delays not calculated for SRAM.", 1)
@ -927,45 +934,45 @@ class control_logic(design.design):
return wl_delays, sen_delays
def analytical_delay(self, corner, slew, load):
"""Gets the analytical delay from clk input to wl_en output"""
""" Gets the analytical delay from clk input to wl_en output """
stage_effort_list = []
#Calculate the load on clk_buf_bar
ext_clk_buf_cout = self.sram.get_clk_bar_cin()
# Calculate the load on clk_buf_bar
# ext_clk_buf_cout = self.sram.get_clk_bar_cin()
#Operations logic starts on negative edge
last_stage_rise = False
# Operations logic starts on negative edge
last_stage_rise = False
#First stage(s), clk -(pdriver)-> clk_buf.
#clk_buf_cout = self.replica_bitline.get_en_cin()
# First stage(s), clk -(pdriver)-> clk_buf.
# clk_buf_cout = self.replica_bitline.get_en_cin()
clk_buf_cout = 0
stage_effort_list += self.clk_buf_driver.get_stage_efforts(clk_buf_cout, last_stage_rise)
last_stage_rise = stage_effort_list[-1].is_rise
#Second stage, clk_buf -(inv)-> clk_bar
# Second stage, clk_buf -(inv)-> clk_bar
clk_bar_cout = self.and2.get_cin()
stage_effort_list += self.and2.get_stage_efforts(clk_bar_cout, last_stage_rise)
last_stage_rise = stage_effort_list[-1].is_rise
#Third stage clk_bar -(and)-> gated_clk_bar
# Third stage clk_bar -(and)-> gated_clk_bar
gated_clk_bar_cin = self.get_gated_clk_bar_cin()
stage_effort_list.append(self.inv.get_stage_effort(gated_clk_bar_cin, last_stage_rise))
last_stage_rise = stage_effort_list[-1].is_rise
#Stages from gated_clk_bar -------> wordline
# Stages from gated_clk_bar -------> wordline
stage_effort_list += self.get_wordline_stage_efforts()
return stage_effort_list
def get_clk_buf_cin(self):
"""
Get the loads that are connected to the buffered clock.
Get the loads that are connected to the buffered clock.
Includes all the DFFs and some logic.
"""
#Control logic internal load
# Control logic internal load
int_clk_buf_cap = self.inv.get_cin() + self.ctrl_dff_array.get_clk_cin() + self.and2.get_cin()
#Control logic external load (in the other parts of the SRAM)
# Control logic external load (in the other parts of the SRAM)
ext_clk_buf_cap = self.sram.get_clk_bar_cin()
return int_clk_buf_cap + ext_clk_buf_cap
@ -976,7 +983,7 @@ class control_logic(design.design):
total_cin = 0
total_cin += self.wl_en_driver.get_cin()
if self.port_type == 'rw':
total_cin +=self.and2.get_cin()
total_cin += self.and2.get_cin()
return total_cin
def graph_exclude_dffs(self):
@ -989,7 +996,7 @@ class control_logic(design.design):
def place_util(self, inst, x_offset, row):
""" Utility to place a row and compute the next offset """
(y_offset,mirror)=self.get_offset(row)
(y_offset, mirror) = self.get_offset(row)
offset = vector(x_offset, y_offset)
inst.place(offset, mirror)
return x_offset+inst.width
return x_offset + inst.width

View File

@ -7,13 +7,13 @@
#
import debug
import design
from tech import drc,parameter
from tech import parameter
from tech import cell_properties as props
from math import log
from vector import vector
from globals import OPTS
from sram_factory import factory
class dff_buf(design.design):
"""
This is a simple buffered DFF. The output is buffered
@ -107,13 +107,23 @@ class dff_buf(design.design):
self.dff_inst.place(vector(0,0))
# Add INV1 to the right
well_spacing = max(self.nwell_space,
self.pwell_space,
self.pwell_to_nwell)
self.inv1_inst.place(vector(self.dff_inst.rx() + well_spacing + self.well_extend_active,0))
well_spacing = 0
try:
well_spacing = max(well_spacing, self.nwell_space)
except AttributeError:
pass
try:
well_spacing = max(well_spacing, self.pwell_space)
except AttributeError:
pass
try:
well_spacing = max(well_spacing, self.pwell_to_nwell)
except AttributeError:
pass
self.inv1_inst.place(vector(self.dff_inst.rx() + well_spacing + self.well_extend_active, 0))
# Add INV2 to the right
self.inv2_inst.place(vector(self.inv1_inst.rx(),0))
self.inv2_inst.place(vector(self.inv1_inst.rx(), 0))
def route_wires(self):
# Route dff q to inv1 a

View File

@ -33,7 +33,6 @@ class hierarchical_decoder(design.design):
except AttributeError:
self.cell_multiple = 1
# For debugging
# self.cell_multiple = 2
self.cell_height = self.cell_multiple * b.height
self.num_outputs = num_outputs

View File

@ -126,14 +126,16 @@ class sense_amp_array(design.design):
for i in range(len(self.local_insts)):
inst = self.local_insts[i]
gnd_pin = inst.get_pin("gnd")
self.add_power_pin(name="gnd",
loc=inst.get_pin("gnd").center(),
start_layer="m2",
loc=gnd_pin.center(),
start_layer=gnd_pin.layer,
vertical=True)
vdd_pin = inst.get_pin("vdd")
self.add_power_pin(name="vdd",
loc=inst.get_pin("vdd").center(),
start_layer="m2",
loc=vdd_pin.center(),
start_layer=vdd_pin.layer,
vertical=True)
bl_pin = inst.get_pin(inst.mod.get_bl_names())

View File

@ -166,7 +166,7 @@ class write_driver_array(design.design):
self.add_power_pin(name=n,
loc=pin.center(),
vertical=True,
start_layer="m2")
start_layer=pin.layer)
if self.write_size:
for bit in range(self.num_wmasks):
inst = self.driver_insts[bit * self.write_size]

View File

@ -0,0 +1,41 @@
#!/usr/bin/env python3
# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import unittest
from testutils import *
import sys,os
sys.path.append(os.getenv("OPENRAM_HOME"))
import globals
from globals import OPTS
from sram_factory import factory
import debug
class hierarchical_predecode2x4_test(openram_test):
def runTest(self):
config_file = "{}/tests/configs/config".format(os.getenv("OPENRAM_HOME"))
globals.init_openram(config_file)
# checking hierarchical precode 2x4 for multi-port
OPTS.bitcell = "pbitcell"
OPTS.num_rw_ports = 1
OPTS.num_w_ports = 0
OPTS.num_r_ports = 0
debug.info(1, "Testing sample for hierarchy_predecode2x4 (multi-port case)")
a = factory.create(module_type="hierarchical_predecode2x4")
self.local_check(a)
globals.end_openram()
# run the test from the command line
if __name__ == "__main__":
(OPTS, args) = globals.parse_args()
del sys.argv[1:]
header(__file__, OPTS.tech_name)
unittest.main(testRunner=debugTestRunner())

View File

@ -26,16 +26,6 @@ class hierarchical_predecode2x4_test(openram_test):
a = factory.create(module_type="hierarchical_predecode2x4")
self.local_check(a)
# checking hierarchical precode 2x4 for multi-port
OPTS.bitcell = "pbitcell"
OPTS.num_rw_ports = 1
OPTS.num_w_ports = 0
OPTS.num_r_ports = 0
debug.info(1, "Testing sample for hierarchy_predecode2x4 (multi-port case)")
a = factory.create(module_type="hierarchical_predecode2x4")
self.local_check(a)
globals.end_openram()
# run the test from the command line

View File

@ -0,0 +1,41 @@
#!/usr/bin/env python3
# See LICENSE for licensing information.
#
# Copyright (c) 2016-2019 Regents of the University of California and The Board
# of Regents for the Oklahoma Agricultural and Mechanical College
# (acting for and on behalf of Oklahoma State University)
# All rights reserved.
#
import unittest
from testutils import *
import sys,os
sys.path.append(os.getenv("OPENRAM_HOME"))
import globals
from globals import OPTS
from sram_factory import factory
import debug
class hierarchical_predecode3x8_test(openram_test):
def runTest(self):
config_file = "{}/tests/configs/config".format(os.getenv("OPENRAM_HOME"))
globals.init_openram(config_file)
# checking hierarchical precode 3x8 for multi-port
OPTS.bitcell = "pbitcell"
OPTS.num_rw_ports = 1
OPTS.num_w_ports = 0
OPTS.num_r_ports = 0
debug.info(1, "Testing sample for hierarchy_predecode3x8 (multi-port case)")
a = factory.create(module_type="hierarchical_predecode3x8")
self.local_check(a)
globals.end_openram()
# run the test from the command line
if __name__ == "__main__":
(OPTS, args) = globals.parse_args()
del sys.argv[1:]
header(__file__, OPTS.tech_name)
unittest.main(testRunner=debugTestRunner())

View File

@ -26,16 +26,6 @@ class hierarchical_predecode3x8_test(openram_test):
a = factory.create(module_type="hierarchical_predecode3x8")
self.local_check(a)
# checking hierarchical precode 3x8 for multi-port
OPTS.bitcell = "pbitcell"
OPTS.num_rw_ports = 1
OPTS.num_w_ports = 0
OPTS.num_r_ports = 0
debug.info(1, "Testing sample for hierarchy_predecode3x8 (multi-port case)")
a = factory.create(module_type="hierarchical_predecode3x8")
self.local_check(a)
globals.end_openram()
# run the test from the command line