Fixed costs and view grid function so that we have better routes and less expansion.

This commit is contained in:
Matt Guthaus 2017-04-24 10:27:04 -07:00
parent 55ed6212a1
commit 96f1eb413e
5 changed files with 220 additions and 108 deletions

View File

@ -11,36 +11,24 @@ class cell:
self.blocked = False
self.source = False
self.target = False
# -1 means it isn't visited yet
self.min_cost = -1
def get_color(self):
r=g=b=0
count=0
# Blues are horizontal
def get_type(self):
if self.blocked:
[r1,g1,b1] = ImageColor.getrgb("Green")
r+=r1
g+=g1
b+=b1
count+=1
return "X"
if self.source or self.target:
[r1,g1,b1] = ImageColor.getrgb("Red")
r+=r1
g+=g1
b+=b1
count+=1
if self.source:
return "S"
if self.target:
return "T"
if self.path:
[r1,g1,b1] = ImageColor.getrgb("Blue")
r+=r1
g+=g1
b+=b1
count+=1
return "P"
if count>0:
return [int(r/count),int(g/count),int(b/count)]
else:
return [255,255,255]
# We can display the cost of the frontier
if self.min_cost > 0:
return str(self.min_cost)
return "."

View File

@ -1,10 +1,11 @@
import numpy as np
from PIL import Image
import string
from itertools import tee
import debug
from vector3d import vector3d
from cell import cell
import os
try:
import Queue as Q # ver. < 3.0
except ImportError:
@ -19,81 +20,172 @@ class grid:
def __init__(self):
""" Create a routing map of width x height cells and 2 in the z-axis. """
self.NONPREFERRED_COST = 5
self.VIA_COST = 3
# costs are relative to a unit grid
# non-preferred cost allows an off-direction jog of 1 grid
# rather than 2 vias + preferred direction (cost 5)
self.VIA_COST = 2
self.NONPREFERRED_COST = 4
# list of the source/target grid coordinates
self.source = []
self.target = []
self.blocked = []
# let's leave the map sparse, cells are created on demand
# let's leave the map sparse, cells are created on demand to reduce memory
self.map={}
# priority queue for the maze routing
self.q = Q.PriorityQueue()
def reinit(self):
""" Reinitialize everything for a new route. """
self.convert_path_to_blockages()
self.convert_pins_to_blockages()
# clear source and target pins
self.source=[]
self.target=[]
# clear the queue
while (not self.q.empty()):
self.q.get(False)
def view(self):
"""
View the data as text array.
"""
#os.system('clear')
xmin=-10
xmax=25
ymin=-10
ymax=25
for v in self.map.keys():
xmin = min(xmin,v.x)
xmax = max(xmax,v.x)
ymin = min(ymin,v.y)
ymax = max(ymax,v.y)
xoffset=0
if xmin < 0:
xoffset=xmin
yoffset=0
if ymin < 0:
yoffset=ymin
v_map = {}
h_map = {}
fieldwidth = 3
for h in self.map.keys():
fieldwidth = max(fieldwidth,len(self.map[h].get_type()))
for v in self.map.keys():
fieldwidth = max(fieldwidth,len(self.map[v].get_type()))
# for x in range(width):
# for y in range(height):
# v_map[x,y]="."
# h_map[x,y]="."
# h = vector3d(x+xoffset,y+yoffset,0)
# v = vector3d(x+xoffset,y+yoffset,1)
# if (h in self.map.keys()):
# h_map[x,y] = self.map[h].get_type()
# fieldwidth = max(fieldwidth,len(h_map[x,y]))
# if (v in self.map.keys()):
# v_map[x,y] = self.map[v].get_type()
# fieldwidth = max(fieldwidth,len(v_map[x,y]))
# def view(self,filename="test.png"):
# """
# View the data by creating an RGB array and mapping the data
# structure to the RGB color palette.
# """
# v_map = np.zeros((self.width,self.height,3), 'uint8')
# mid_map = np.ones((10,self.height,3), 'uint8')
# h_map = np.ones((self.width,self.height,3), 'uint8')
# display lower layer
print '='*80
print '='*80
self.printgrid(0,xmin,xmax,ymin,ymax,fieldwidth)
print '='*80
self.printgrid(1,xmin,xmax,ymin,ymax,fieldwidth)
print '='*80
print '='*80
raw_input("Press Enter to continue...")
# # We shouldn't have a path greater than 50% the HPWL
# # so scale all visited indices by this value for colorization
# for x in range(self.width):
# for y in range(self.height):
# h_map[x,y] = self.map[vector3d(x,y,0)].get_color()
# v_map[x,y] = self.map[vector3d(x,y,1)].get_color()
# # This is just for scale
# if x==0 and y==0:
# h_map[x,y] = [0,0,0]
# v_map[x,y] = [0,0,0]
def printgrid(self,layer,xmin,xmax,ymin,ymax,fieldwidth):
"""
Display a text representation of a layer of the routing grid.
"""
print "".center(fieldwidth),
for x in range(xmin,xmax+1):
print str(x).center(fieldwidth),
print ""
for y in reversed(range(ymin,ymax+1)):
print str(y).center(fieldwidth),
for x in range(xmin,xmax+1):
n = vector3d(x,y,layer)
if n in self.map.keys():
print self.map[n].get_type().center(fieldwidth),
else:
print ".".center(fieldwidth),
print ""
# v_img = Image.fromarray(v_map, 'RGB').rotate(90)
# #v_img.show()
# mid_img = Image.fromarray(mid_map, 'RGB').rotate(90)
# h_img = Image.fromarray(h_map, 'RGB').rotate(90)
# #h_img.show()
# # concatenate them into a plot with the two layers
# img = Image.new('RGB', (2*self.width+10, self.height))
# img.paste(h_img, (0,0))
# img.paste(mid_img, (self.width,0))
# img.paste(v_img, (self.width+10,0))
# #img.show()
# img.save(filename)
def set_property(self,ll,ur,z,name,value=True):
def add_blockage(self,ll,ur,z):
debug.info(3,"Adding blockage ll={0} ur={1} z={2}".format(str(ll),str(ur),z))
for x in range(int(ll[0]),int(ur[0])+1):
for y in range(int(ll[1]),int(ur[1])+1):
n = vector3d(x,y,z)
self.add_map(n)
setattr (self.map[n], name, True)
if n not in getattr(self, name):
getattr(self, name).append(n)
def add_blockage(self,ll,ur,z):
debug.info(3,"Adding blockage ll={0} ur={1} z={2}".format(str(ll),str(ur),z))
self.set_property(ll,ur,z,"blocked")
self.map[n].blocked=True
def set_source(self,ll,ur,z):
debug.info(1,"Adding source ll={0} ur={1} z={2}".format(str(ll),str(ur),z))
self.set_property(ll,ur,z,"source")
for x in range(int(ll[0]),int(ur[0])+1):
for y in range(int(ll[1]),int(ur[1])+1):
n = vector3d(x,y,z)
self.add_map(n)
self.map[n].source=True
# Can't have a blocked target otherwise it's infeasible
self.map[n].blocked=False
self.source.append(n)
def set_target(self,ll,ur,z):
debug.info(1,"Adding target ll={0} ur={1} z={2}".format(str(ll),str(ur),z))
self.set_property(ll,ur,z,"target")
for x in range(int(ll[0]),int(ur[0])+1):
for y in range(int(ll[1]),int(ur[1])+1):
n = vector3d(x,y,z)
self.add_map(n)
self.map[n].target=True
# Can't have a blocked target otherwise it's infeasible
self.map[n].blocked=False
self.target.append(n)
def convert_pins_to_blockages(self):
"""
Convert all the pins to blockages and reset the pin sets.
"""
for p in self.map.values():
if (p.source or p.target):
p.blocked=True
def convert_path_to_blockages(self):
"""
Convert the routed path to blockages and reset the path.
"""
for p in self.map.values():
if (p.path):
p.path=False
p.blocked=True
def set_path(self,path):
"""
Mark the path in the routing grid for visualization
"""
self.path=path
for p in path:
self.map[p].path=True
@ -105,7 +197,7 @@ class grid:
# We set a cost bound of 2.5 x the HPWL for run-time. This can be
# over-ridden if the route fails due to pruning a feasible solution.
if (cost_bound==0):
cost_bound = 2.5*self.cost_to_target(self.source[0])
cost_bound = self.cost_to_target(self.source[0])*self.NONPREFERRED_COST
# Make sure the queue is empty if we run another route
while not self.q.empty():
@ -119,7 +211,8 @@ class grid:
# Keep expanding and adding to the priority queue until we are done
while not self.q.empty():
(cost,path) = self.q.get()
debug.info(2,"Expanding: cost=" + str(cost) + " " + str(path))
debug.info(2,"Queue size: size=" + str(self.q.qsize()) + " " + str(cost))
debug.info(3,"Expanding: cost=" + str(cost) + " " + str(path))
# expand the last element
neighbors = self.expand_dirs(path)
@ -129,17 +222,25 @@ class grid:
newpath = path + [n]
if n not in self.map.keys():
self.map[n]=cell()
self.map[n].visited=True
# check if we hit the target and are done
if self.is_target(n):
return (newpath,self.cost(newpath))
else:
# potential path cost + predicted cost
cost = self.cost(newpath) + self.cost_to_target(n)
elif not self.map[n].visited:
# current path cost + predicted cost
current_cost = self.cost(newpath)
target_cost = self.cost_to_target(n)
predicted_cost = current_cost + target_cost
# only add the cost if it is less than our bound
if (cost < cost_bound):
self.q.put((cost,newpath))
if (predicted_cost < cost_bound):
if (self.map[n].min_cost==-1 or current_cost<self.map[n].min_cost):
self.map[n].visited=True
self.map[n].min_path = newpath
self.map[n].min_cost = predicted_cost
debug.info(3,"Enqueuing: cost=" + str(current_cost) + "+" + str(target_cost) + " " + str(newpath))
# add the cost to get to this point if we haven't reached it yet
self.q.put((predicted_cost,newpath))
#self.view()
debug.error("Unable to route path. Expand area?",-1)
@ -209,36 +310,54 @@ class grid:
Cost so far will be the length of the path.
"""
debug.info(4,"Initializing queue.")
# uniquify the source (and target while we are at it)
self.source = list(set(self.source))
self.target = list(set(self.target))
for s in self.source:
cost = self.cost_to_target(s)
debug.info(4,"Init: cost=" + str(cost) + " " + str([s]))
self.q.put((cost,[s]))
def hpwl(self, src, dest):
"""
Return half perimeter wire length from point to another.
Either point can have positive or negative coordinates.
Include the via penalty if there is one.
"""
hpwl = max(abs(src.x-dest.x),abs(dest.x-src.x))
hpwl += max(abs(src.y-dest.y),abs(dest.y-src.y))
hpwl += max(abs(src.z-dest.z),abs(dest.z-src.z))
if src.x!=dest.x or src.y!=dest.y:
hpwl += self.VIA_COST
return hpwl
def cost_to_target(self,source):
"""
Find the cheapest HPWL distance to any target point
Find the cheapest HPWL distance to any target point ignoring
blockages for A* search.
"""
cost = source.hpwl(self.target[0])
cost = self.hpwl(source,self.target[0])
for t in self.target:
cost = min(source.hpwl(t),cost)
cost = min(self.hpwl(source,t),cost)
return cost
def cost(self,path):
"""
The cost of the path is the length plus a penalty for the number
of vias.
We assume that non-preferred direction is penalized 2x.
of vias. We assume that non-preferred direction is penalized.
"""
# Ignore the source pin layer change, FIXME?
def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = tee(iterable)
next(b, None)
return zip(a, b)
plist = pairwise(path)
cost = 0
for p0,p1 in plist:
@ -250,7 +369,7 @@ class grid:
cost += self.NONPREFERRED_COST if (p0.z == 0) else 1
else:
debug.error("Non-changing direction!")
return cost
def get_inertia(self,p0,p1):

View File

@ -118,6 +118,7 @@ class router:
for layer in self.layers:
self.write_obstacle(self.top_name)
def clear_pins(self):
"""
Reset the source and destination pins to start a new routing.
@ -126,8 +127,13 @@ class router:
Clear other pins from blockages?
"""
self.source = []
self.dest = []
self.pin_names = []
self.pin_shapes = {}
self.pin_layers = {}
self.all_pin_shapes = []
self.rg.reinit()
def route(self, layers, src, dest):
@ -136,7 +142,11 @@ class router:
the simplified rectilinear path.
"""
# Clear the pins if we have previously routed
self.clear_pins()
if (hasattr(self,'rg')):
self.num=self.num+1
self.clear_pins()
else:
self.num=0
# Set up layers and track sizes
self.set_layers(layers)
@ -152,15 +162,15 @@ class router:
self.find_blockages()
#self.rg.view("preroute.png")
self.rg.view()
# returns the path in tracks
(self.path,cost) = self.rg.route()
debug.info(1,"Found path: cost={0} ".format(cost))
debug.info(2,str(self.path))
self.set_path(self.path)
self.rg.view()
#self.rg.view("postroute.png")
return
def add_route(self,cell):
@ -197,6 +207,7 @@ class router:
c=contact(self.layers, (1, 1))
via_offset = vector(-0.5*c.width,-0.5*c.height)
cell.add_via(self.layers,abs_path[0]+via_offset)
# Check if a via is needed at the end point
if (contracted_path[-1].z!=self.target_pin_layer):
# offset this by 1/2 the via size

View File

@ -55,14 +55,15 @@ class two_nets_test(unittest.TestCase):
layer_stack =("metal1","via1","metal2")
r.route(layer_stack,src="A",dest="B")
r.add_route(self)
#self.gds_write("temp1.gds")
#r.route(layer_stack,src="C",dest="D")
#r.add_route(self)
r.route(layer_stack,src="C",dest="D")
r.add_route(self)
#self.gds_write("temp2.gds")
r = routing("test1", "05_two_nets_test")
r.gds_write("temp.gds")
self.local_check(r)
# fails if there are any DRC errors on any cells

View File

@ -136,10 +136,3 @@ class vector3d():
""" Min of both values """
return vector3d(min(self.x,other.x),min(self.y,other.y),min(self.z,other.z))
def hpwl(self, other):
""" Return half perimeter wire length from point to another.
Either point can have positive or negative coordinates. """
hpwl = max(abs(self.x-other.x),abs(other.x-self.x))
hpwl += max(abs(self.y-other.y),abs(other.y-self.y))
hpwl += max(abs(self.z-other.z),abs(other.z-self.z))
return hpwl